MUTUAL EXISTENCE OF PRODUCT INTEGRALS
IN NORMED RINGS

BY

JON C. HELTON

ABSTRACT. Definitions and integrals are of the subdivision-refinement type, and functions are from \(R \times R \) to \(N \), where \(R \) denotes the set of real numbers and \(N \) denotes a ring which has a multiplicative identity element represented by 1 and a norm \(| \cdot |\) with respect to which \(N \) is complete and \(|1| = 1\). If \(G \) is a function from \(R \times R \) to \(N \), then \(G \in OM^* \) on \([a, b]\) only if (i) \(\prod_y^n (1 + G) \) exists for \(a < x < y < b \) and (ii) if \(\epsilon > 0 \), then there exists a subdivision \(D \) of \([a, b]\) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D \) and \(0 < p < q < n \), then

\[
\prod_{x_p}^q (1 + G) - \prod_{i=p+1}^q (1 + G) < \epsilon;
\]

and \(G \in OM^0 \) on \([a, b]\) only if (i) \(\prod_x^n (1 + G) \) exists for \(a < x < y < b \) and (ii) the integral \(\int_a^b (1 + G - \prod(1 + G)) \) exists and is zero. Further, \(G \in OP^0 \) on \([a, b]\) only if there exist a subdivision \(D \) of \([a, b]\) and a number \(B \) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D \) and \(0 < p < q < n \), then \(|\prod_{i=p}^q (1 + G)| < B \).

If \(F \) and \(G \) are functions from \(R \times R \) to \(N \), \(F \in OP^0 \) on \([a, b]\), each of \(\lim_{x \to p} F(x, y) \) and \(\lim_{y \to p} F(x, y) \) exists and is zero for \(p \in [a, b] \), each of \(\lim_{x \to p} G(x, p) \), \(\lim_{y \to p} F(p, y) \), \(\lim_{x \to p} G(p, x) \) and \(\lim_{y \to p} G(x, p) \) exists for \(p \in [a, b] \), and \(G \) has bounded variation on \([a, b]\), then any two of the following statements imply the other:

1. \(F + G \in OM^* \) on \([a, b]\),
2. \(F \in OM^* \) on \([a, b]\), and
3. \(G \in OM^* \) on \([a, b]\).

In addition, with the same restrictions on \(F \) and \(G \), any two of the following statements imply the other:

1. \(F + G \in OM^0 \) on \([a, b]\),
2. \(F \in OM^0 \) on \([a, b]\), and
3. \(G \in OM^0 \) on \([a, b]\).

Presented to the Society, January 23, 1975; received by the editors October 4, 1974.

Key words and phrases. Sum integral, product integral, subdivision-refinement integral, existence, interval function, normed complete ring.

(1) This research was supported in part by a grant from Arizona State University.

Copyright © 1975. American Mathematical Society
All definitions are of the subdivision-refinement type, and functions are from \(R \times R \) to \(N \), where \(R \) denotes the set of real numbers and \(N \) denotes a ring which has a multiplicative identity element represented by 1 and a norm \(| \cdot |\) with respect to which \(N \) is complete and \(|1| = 1\). Functions are assumed to be defined only for elements \(\{x, y\} \) of \(R \times R \) such that \(x < y \).

If \(G \) is a function from \(R \times R \) to \(N \), then \(\int_a^b G \) exists only if there exists an element \(L \) of \(N \) such that, if \(\epsilon > 0 \), then there exists a subdivision \(D \) of \([a, b]\) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D \), then \(|L - \sum_{i=1}^n G_i| < \epsilon \), where \(G_i = G(x_{i-1}, x_i) \). Similarly, \(\alpha \Pi^b(1 + G) \) exists only if there exists an element \(L \) of \(N \) such that, if \(\epsilon > 0 \), then there exists a subdivision \(D \) of \([a, b]\) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D \), then \(|L - \sum_{i=1}^n (1 + G_i)| < \epsilon \).

The statements that \(G \) is bounded on \([a, b] \), \(G \in O^\circ \) on \([a, b]\) and \(G \in O^B \) on \([a, b]\) mean there exist a subdivision \(D \) of \([a, b]\) and a number \(B \) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D \), then

1. \(|G_i| < B \) for \(1 \leq i \leq n \),
2. \(|\Pi_{p=q}^b (1 + G_i)| < B \) for \(1 \leq p \leq q \leq n \), and
3. \(\sum_{i=1}^n |G_i| < B \),

respectively.

Let \(G(p, p^+), G(p^+, p), G(p^-, p) \) and \(G(p^-, p^-) \) represent

\[
\lim_{x \to p} G(x, y), \lim_{x \to p} G(x, y), \lim_{x \to -p} G(x, y) \text{ and } \lim_{x \to y} G(x, y),
\]

respectively. Now, \(G \in S^1 \) on \([a, b]\) only if \(G(p, p^+) \) exists and is zero for \(a \leq p < b \) and \(G(p^-, p^-) \) exists and is zero for \(a < p \leq b \); and \(G \in S^2 \) on \([a, b]\) only if \(G(p, p^+) \) exists for \(a \leq p < b \) and \(G(p^-, p) \) exists for \(a < p \leq b \). Further, \(G \in O^\circ \) on \([a, b]\) only if \(G(p, p^+) \) and \(G(p^+, p^-) \) exist for \(a \leq p < b \) and \(G(p^-, p) \) and \(G(p^-, p^-) \) exist for \(a < p \leq b \).

For additional background on product integration, the reader is referred to papers by P. R. Masani [10], J. S. MacNerney [9], B. W. Helton [2] and the author [7].

Suppose \(F \) and \(G \) are functions on \(R \times R \). If \(\int_a^b F \) exists and \(\int_a^b G \) exists, then it is easily shown that \(\int_a^b (F + G) \) exists. However, if \(x^\Pi^y (1 + F) \) and \(x^\Pi^y (1 + G) \) exist for \(a \leq x < y \leq b \), it does not necessarily follow that \(x^\Pi^y (1 + F + G) \) exists for \(a \leq x < y \leq b \). The purpose of this paper is to investigate the existence of such product integrals. In particular, with suitable restrictions on the functions involved, we interrelate the existence of \(x^\Pi^y (1 + F) \), \(x^\Pi^y (1 + G) \) and \(x^\Pi^y (1 + F + G) \). However, before stating our results, we need several additional definitions.

First, \(G \in O^A \) on \([a, b]\) only if \(\int_a^b G \) exists and \(\int_a^b |G - \int G| = 0 \). Second, \(G \in O^M \) on \([a, b]\) only if \(x^\Pi^y (1 + G) \) exists for \(a \leq x < y \leq b \) and \(\int_a^b |1 + G - \Pi (1 + G)| = 0 \). Third, \(G \in O^* \) on \([a, b]\) only if \((1) x^\Pi^y (1 + G) \)
exists for \(a \leq x < y \leq b\), and (2) if \(\epsilon > 0\), then there exists a subdivision \(D\) of \([a, b]\) such that, if \(\{x_i\}_{i=0}^n\) is a refinement of \(D\) and \(0 \leq p < q \leq n\), then

\[
\left| x_p \prod_{i=p+1}^{x_q}(1 + G) - \prod_{i=p+1}^{q}(1 + G) \right| < \epsilon.
\]

We now state the main results of this paper.

Theorem 1. If \(F\) and \(G\) are functions from \(\mathbb{R} \times \mathbb{R}\) to \(N\), \(F\) is in \(\mathcal{O}P^0\) and \(S_1 \cap S_2\) on \([a, b]\) and \(G\) is in \(\mathcal{O}B^0\) and \(S_2\) on \([a, b]\), then any two of the following statements imply the other:

1. \(F + G \in \mathcal{O}M^*\) on \([a, b]\),
2. \(F \in \mathcal{O}M^*\) on \([a, b]\), and
3. \(G \in \mathcal{O}M^*\) on \([a, b]\).

Theorem 2. If \(F\) and \(G\) are functions from \(\mathbb{R} \times \mathbb{R}\) to \(N\), \(F\) is in \(\mathcal{O}P^0\) and \(S_1 \cap S_2\) on \([a, b]\) and \(G\) is in \(\mathcal{O}B^0\) and \(S_2\) on \([a, b]\), then any two of the following statements imply the other:

1. \(F + G \in \mathcal{O}M^0\) on \([a, b]\),
2. \(F \in \mathcal{O}M^0\) on \([a, b]\), and
3. \(G \in \mathcal{O}M^0\) on \([a, b]\).

Theorems 1 and 2 are not the same. A function can belong to \(\mathcal{O}M^*\) on \([a, b]\) without belonging to \(\mathcal{O}M^0\) on \([a, b]\). For example, if \(G \in \mathcal{O}B^0\) on \([a, b]\) and \(x \prod(1 + G)\) exists for \(a \leq x < y \leq b\), then \(G \in \mathcal{O}M^*\) on \([a, b]\) [7, Theorem 1]; but, it is possible to construct a function \(G\) such that \(G \in \mathcal{O}B^0\) on \([a, b]\), \(x \prod(1 + G)\) exists for \(a \leq x < y \leq b\) and \(G \notin \mathcal{O}M^0\) on \([a, b]\) [4, pp. 153–154]. However, if \(G\) is in \(\mathcal{O}M^0\) and \(\mathcal{O}P^0\) on \([a, b]\), then \(G \in \mathcal{O}M^*\) on \([a, b]\).

Theorem 2 is proved for functions from \(\mathbb{R} \times \mathbb{R}\) to \(\mathbb{R}\) in a previous paper by the author [6, Theorem 1, p. 101]. However, that proof relies heavily on the commutativity of \(\mathbb{R}\) and thus is not the same as the proof presented in this paper. In this presentation, the lack of commutativity is handled by using a series representation for products.

The classes \(\mathcal{O}M^*\) and \(\mathcal{O}M^0\) are not as restricted as may initially appear. As noted before, if \(G \in \mathcal{O}B^0\) on \([a, b]\) and \(x \prod(1 + G)\) exists for \(a \leq x < y \leq b\), then \(G \in \mathcal{O}M^*\) on \([a, b]\) [7, Theorem 1]. For another example, suppose

\[
F(x, y) = \begin{bmatrix} 0 & 0 \\ b(y) - h(x) & 0 \end{bmatrix}
\]

for \(a \leq x < y \leq b\), where \(h\) is a quasi-continuous function from \(\mathbb{R}\) to \(N\). Then, with a suitable norm, \(F\) is in \(\mathcal{O}P^0\), \(\mathcal{O}M^0\) and \(S_1 \cap S_2\) on \([a, b]\). Thus, \(F\)
satisfies the hypotheses of Theorems 1 and 2; however, it does not necessarily follow that \(F \in OB^o \) on \([a, b]\). With Theorems 1 and 2 and functions such as \(F \), it is possible to construct many functions in \(OM^* \) and \(OM^o \). A fundamental correspondence exists between sum and product integrals. In particular, if \(G \in OB^o \) on \([a, b]\), then \(\int_a^b G \) exists if and only if \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \) [7, Theorem 4], and \(G \in OA^o \) on \([a, b]\) if and only if \(G \in OM^o \) on \([a, b]\) [2, Theorem 3.4, p. 301]. If \(G \) is a function from \(R \times R \) to \(R \), then \(G \in OA^o \) on \([a, b]\) [8, p. 669]. Further, there exist other systems such that the existence of \(\int_a^b G \) is sufficient to imply that \(G \in OA^o \) on \([a, b]\) [1, Theorem 2, p. 155], [2, Theorem 4.1, p. 304]. Thus, with the preceding results, many functions in \(OM^* \) and \(OM^o \) can be obtained. In addition, if \(H \in OL^o \) on \([a, b]\) and \(G \in OB^o \) on \([a, b]\) and either \(\int_a^b G \) exists or \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \), then \(\int_a^b HG \) and \(\int_a^b GH \) exist and \(\prod_x^y (1 + HG) \) and \(\prod_x^y (1 + GH) \) exist for \(a \leq x < y \leq b \) [7, Theorem 5]. Therefore, there exist many functions to which the theorems of this paper apply.

We now establish Theorem 1. Several lemmas are needed.

Lemma 1. If \(H \) and \(G \) are functions from \(R \times R \) to \(N \), \(H \in OL^o \) on \([a, b]\), \(G \in OB^o \) on \([a, b]\) and either \(\int_a^b G \) exists or \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \), then \(\int_a^b HG \) and \(\int_a^b GH \) exist and \(\prod_x^y (1 + HG) \) and \(\prod_x^y (1 + GH) \) exist for \(a \leq x < y \leq b \) [7, Theorem 5].

Lemma 2. If \(f \) is a function from \(R \) to \(R \) such that \((LR) \int_a^b (-df) f^{n-i} \) exists for \(i = 0, 1, \ldots, n \), then

\[
\sum_{i=0}^{n} (LR) \int_a^b (-df) f^{n-i} = f^{n+1}(a) - f^{n+1}(b).
\]

Proof. This result follows by applying the identity

\[
(r - s) \sum_{i=0}^{n} r^{n-i} s^i = r^{n+1} - s^{n+1}
\]

to the approximating sums of the integrals involved.

Lemma 3. If \(\{F_i\}_{i=m}^{n} \) and \(\{G_i\}_{i=m}^{n} \) are sequences of elements of \(N \), then

\[
\prod_{i=m}^{n} (1 + F_i + G_i) = \sum_{i=0}^{n+1-m} S_{imn},
\]

where

\[
S_{0pn} = \begin{cases}
\prod_{j=p}^{n} (1 + F_j) & \text{if } 0 < p \leq n, \\
1 & \text{if } p > n,
\end{cases}
\]
and
\[
S_{ipn} = \begin{cases}
\sum_{j=p}^{n} [\prod_{k=p}^{j-1} (1 + F_k)] G_j S_{i-1,i+1,n} & \text{if } 0 \leq p \leq n, \\
0 & \text{if } p > n
\end{cases}
\]
for \(i = 1, 2, \ldots \).

Proof. This lemma can be established by induction.

Lemma 4. If \(F \) and \(G \) are functions from \(\mathbb{R} \times \mathbb{R} \) to \(\mathbb{N} \), \(F \in \mathcal{O}^0 \) on \([a, b] \) and \(G \in \mathcal{O}^0 \) on \([a, b] \), then there exist a subdivision \(D \) of \([a, b] \), a number \(B \) and a positive nondecreasing function \(g \) defined on \([a, b] \) such that, if \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D \), \(j \) is a nonnegative integer and \(0 < p < q \leq n \), then
\[
|S_{ipq}| \leq B^{j+1}[g(x_q) - g(x_{p-1})]/j!,
\]
where \(S_{ipq} \) is defined in Lemma 3.

Proof. Since \(F \in \mathcal{O}^0 \) on \([a, b] \) and \(G \in \mathcal{O}^0 \) on \([a, b] \), there exist a subdivision \(D \) of \([a, b] \) and a number \(B \) such that, if \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D \), then
\[
\begin{align*}
(1) \quad |\prod_{i=p}^{q} (1 + F_i)| &< B \quad \text{for } 0 \leq p < q \leq n, \\
(2) \quad \sum_{i=1}^{n} |G_i| &< B.
\end{align*}
\]
Let \(g \) be the function defined on \([a, b] \) such that
\[
\begin{align*}
(1) \quad g(a) & = 1, \\
(2) \quad g(x) & = 1 + \max \{\sum_{j} |G_j| : j \text{ a refinement of } \{x\}_{i=0}^{p-1} \cup \{x\}, \; 0 < p \leq n \text{ and } x_{p-1} < x \leq x_p\}.
\end{align*}
\]
Thus, \(g \) is a positive nondecreasing function.

We use induction to establish the desired inequality. If \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D \) and \(0 < p \leq q \leq n \), then
\[
|S_{0pq}| = \left| \prod_{i=p}^{q} (1 + F_i) \right| \leq B.
\]
Thus, the inequality is true for \(j = 0 \).

Suppose the inequality holds for the nonnegative integer \(j \). That is, if \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D \) and \(0 < p \leq q \leq n \), then \((\dagger)\) holds.

We now establish that the inequality also holds for \(j + 1 \). Suppose \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D \) and \(0 < p \leq q \leq n \). To simplify notation in the following manipulations, let
\[
f(v) = g(x_q) - g(v)
\]
for \(x_p \leq v \leq x_q \). Now,
\[|S_{j+1, p, q}| = \left| \sum_{i=p}^{q} \prod_{k=p}^{i-1} (1 + F_k) G_i S_{j, i+1, q} \right| \]
\[\leq B \sum_{i=p}^{q} |G_i| |S_{j, i+1, q}| \]
\[\leq B \sum_{i=p}^{q} \{g(x_i) - g(x_{i-1})\} \{B^{i+1} [g(x_q) - g(x_i)] i/j!\} \]
\[\leq B \left[(R) \int_{x_{p-1}}^{x_q} dg (B^{i+1} [g(x_q) - g(x_i)] i/j!\right] \]
\[= [B^{i+2}/j!] \left((R) \int_{x_{p-1}}^{x_q} (-df)/j! \right) \]
\[\leq [B^{i+2} / (j+1)!] \sum_{k=0}^{j} (LR) \int_{x_{p-1}}^{x_q} (-df)/j! - k/k! \]
\[= [B^{i+2} / (j+1)!] [i+1^[q] - j+1^[q]] \quad \text{(Lemma 2)} \]

Thus, the inequality holds for \(j + 1 \). Hence, the inequality is valid for \(j = 0, 1, 2, \ldots \). Therefore, Lemma 4 is established.

Lemma 5. If \(F \) and \(G \) are functions from \(\mathbb{R} \times \mathbb{R} \) to \(\mathbb{N} \), \(F \in \mathcal{O}^\circ \) on \([a, b]\) and \(G \in \mathcal{O}^\circ \) on \([a, b]\), then \(F + G \in \mathcal{O}^\circ \) on \([a, b]\).

Proof. This lemma follows as a corollary to Lemmas 3 and 4.

Lemma 5 is established in a previous paper by the author for functions from \(\mathbb{R} \times \mathbb{R} \) to \(\mathbb{R} \) [5, Theorem 1 (1 \(-\to 2 \)), p. 378]. However, the proof presented there is different from the proof employed in this paper.

Lemma 6. If \(\{F_i\}_{i=m}^{n} \) and \(\{G_i\}_{i=m}^{n} \) are sequences of elements of \(\mathbb{N} \), then
\[\prod_{i=m}^{n} (1 + F_i + G_i) = \prod_{i=m}^{n} (1 + F_i) \]
\[+ \sum_{i=m}^{n} \left[\prod_{j=m}^{i-1} (1 + F_j) \right] G_i \left[\prod_{j=i+1}^{n} (1 + F_j + G_j) \right]. \]

Proof. This lemma can be established by induction.

Lemma 7. If \(G \) is a function from \(\mathbb{R} \times \mathbb{R} \) to \(\mathbb{N} \) and \(G \in \mathcal{O}^\circ \) on \([a, b]\), then the following statements are equivalent:
(1) \(\int_a^b G \) exists, and

(2) \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \).

Further, if \(G \in OB^o \) on \([a, b] \) and (1) or (2) is true, then \(G \in OM^* \) on \([a, b] \).

Proof. If \(G \in OB^o \) on \([a, b] \) and \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \), then \(G \in OM^* \) on \([a, b] \) [7, Theorem 1]. Also, if \(G \in OB^o \) on \([a, b] \), then \(\int_a^b G \) exists if and only if \(\prod_x^y (1 + G) \) exists for \(a \leq x < y \leq b \) [7, Theorem 4]. Thus, the lemma follows.

We now establish Theorem 1.

Proof of Theorem 1 [(2), (3) \(\rightarrow \) (1)]. We initially establish that \(\sum_{i=0}^{\infty} P_i(x, y) \) converges uniformly and absolutely for \(a \leq x < y \leq b \), where

\[
P_0(x, y) = \prod_x^y (1 + F)
\]

and

\[
P_i(x, y) = (LR) \int_x^y \prod_x^u (1 + F) GP_{i-1}(u, y)
\]

for \(a \leq x < y \leq b \) and \(i = 1, 2, \ldots \). The existence of these integrals follows by applying Lemma 1.

From Lemma 4, there exist a subdivision \(D_1 \) of \([a, b] \), a number \(B \) and a positive nondecreasing function \(g \) defined on \([a, b] \) such that, if \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D_1 \), \(i \) is a nonnegative integer and \(0 < p \leq q \leq n \), then

\[
|S_{ipq}| \leq B^{i+1} [g(x_q) - g(x_{p-1})]/i!
\]

and

\[
|S_{ipq}| \leq B^{i+1} [g(x_q) - g(x_{p-1})]/i!,
\]

where \(S_{ipq} \) is defined as in Lemma 3.

It follows from the result stated in the preceding paragraph that

\[
|P_i(x, y)| \leq B^{i+1} [g(y) - g(x)]/i!
\]

for \(a \leq x < y \leq b \) and \(i = 0, 1, 2, \ldots \). Therefore, \(\sum_{i=0}^{\infty} P_i \) converges uniformly and absolutely on \([a, b] \).

Suppose \(a \leq x < y \leq b \). We now establish that \(\prod_x^y (1 + F + G) \) exists and is \(\sum_{i=0}^{\infty} P_i(x, y) \). Let \(\epsilon > 0 \).

There exists a positive integer \(N \) such that

\[
\sum_{i=N+1}^{\infty} B^{i+1} [g(b) - g(a)]/i! < \epsilon/3.
\]

Further, from the existence properties of the integrals involved, there exists a subdivision \(D_2 \) of \([a, b] \) such that, if \(\{x_i\}_{i=0}^{n} \) is a refinement of \(D_2 \) and \(0 < p < q \leq n \), then
Let D denote a subdivision of $[x, y]$ which refines the intersection of $[x, y]$ and $D_1 \cup D_2$ and has at least $N + 1$ elements. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D. Now,

\[
\left| \sum_{i=0}^{\infty} P_i(x, y) - \prod_{i=1}^{n} (1 + F_i + G_i) \right| = \left| \sum_{i=0}^{\infty} P_i(x, y) - \sum_{i=0}^{n} S_i \right| \leq \left| \sum_{i=0}^{N} P_i(x, y) - \sum_{i=0}^{n} S_i \right| + \left| \sum_{i=N+1}^{\infty} P_i(x, y) \right| + \sum_{i=N+1}^{n} S_i \leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.
\]

Hence, $\prod_{i}^{x,y} (1 + F + G)$ exists and is $\sum_{i=0}^{\infty} P_i(x, y)$.

We now establish that $F + G \in OM^*$ on $[a, b]$. Since $x_i^{1/3}(1 + F + G)$ exists for $a < x < y < b$, it is only necessary to establish the approximation part of the definition. Let $\epsilon > 0$. Further, let D_1, D_2 and N be defined as before.

Since F is in OM^*, OP^0 and S_2 on $[a, b]$ and G is in OB^0 and S_2 on $[a, b]$, there exists a subdivision D_3 of $[a, b]$ such that, if $\{x_i\}_{i=0}^n$ is a refinement of $[a, b]$, $0 \leq p < q \leq n$ and $q - p \leq N$, then

\[
\left| \prod_{i=p+1}^{q} (1 + F + G) - \prod_{i=p+1}^{q} (1 + F_i + G_i) \right| < \epsilon.
\]

Let D denote the subdivision $D_1 \cup D_2 \cup D_3$ of $[a, b]$. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D and $0 \leq p < q \leq n$. If $q - p \leq N$, then the desired inequality follows immediately from the definition of D_3. If $q - p \geq N$, then

\[
\left| \prod_{i=p+1}^{q} (1 + F + G) - \prod_{i=p+1}^{q} (1 + F_i + G_i) \right| = \left| \sum_{i=0}^{\infty} P_i(x_p, x_q) - \sum_{i=0}^{p-q} S_{i, p+1, q} \right| \leq \left| \sum_{i=0}^{N} P_i(x_p, x_q) - \sum_{i=0}^{N} S_{i, p+1, q} \right| + \sum_{i=N+1}^{\infty} P_i(x_p, x_q) \leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.
\]
Therefore, \(F + G \in OM^* \) on \([a, b]\). Thus, (2) and (3) imply (1).

Proof of Theorem 1 [(1), (2) \(\rightarrow\) (3)]. Since \(F \) and \(F + G \) are in \(OM^* \) and \(OP^o \) on \([a, b]\), the existence of

\[
(LR) \int_x^y \prod_x^y (1 + F)G \prod_x^y (1 + F + G)
\]

for \(a \leq x < y \leq b \) can be established by employing Lemma 6.

Since \(F \) and \(F + G \) are in \(S_1 \) on \([a, b]\), there exists a subdivision \(\{x_i\}_{i=0}^n \) of \([a, b]\) such that, if \(1 \leq i \leq n \) and \(x_{i-1} < x < y < x_i \), then

\[
\left| \prod_x^y (1 + F) \right| < \frac{1}{2} \quad \text{and} \quad \left| \prod_x^y (1 + F + G) \right| < \frac{1}{2}.
\]

Suppose \(1 \leq i \leq n \) and \(x_{i-1} < x < y < x_i \). Let \(J \) and \(K \) represent interval functions such that, if \(x \leq u < v \leq y \), then

\[
J(u, v) = \prod_x^y (1 + F) \quad \text{and} \quad K(u, v) = \prod_x^y (1 + F + G).
\]

Since \(J \) and \(K \) are in \(OL^o \) on \([a, b]\), it follows that \(J^{-1} \) and \(K^{-1} \) are also in \(OL^o \) on \([a, b]\). Thus, from Lemma 1 and the existence of the integral in the preceding paragraph, we have that \(\int_x^y G \) exists.

We have now established that, if \(1 \leq i \leq n \) and \(x_{i-1} < x < y < x_i \), then \(\int_x^y G \) exists. From this and the fact that \(G \) is in \(OB^o \) and \(S_2 \) on \([a, b]\), it follows that \(\int_a^b G \) exists. Hence, \(G \in OM^* \) on \([a, b]\) by Lemma 7. Thus, (1) and (2) imply (3).

Proof of Theorem 1 [(1), (3) \(\rightarrow\) (2)]. It follows from Lemma 5 that \(F + G \in OP^o \) on \([a, b]\). Further, \(-G \in OM^* \) by Lemma 7. We have already established that (2) and (3) imply (1). Now, since \(F + G - G = F \), it follows that \(F \in OM^* \) on \([a, b]\). Thus, (1) and (3) imply (2).

The proof of Theorem 1 is now complete. We next establish Theorem 2.

One additional lemma is needed.

Lemma 8. If \(G \) is a function from \(R \times R \) to \(N \) and \(G \in OB^o \) on \([a, b]\), then the following statements are equivalent:

1. \(G \in OA^o \) on \([a, b]\), and
2. \(G \in OM^o \) on \([a, b]\) [2, Theorem 3.4, p. 301].

Proof of Theorem 2 [(2), (3) \(\rightarrow\) (1)]. Since \(F \) and \(G \) are in \(OP^o \) and \(OM^o \) on \([a, b]\), \(F \) and \(G \) are also in \(OM^* \) on \([a, b]\). Hence, it follows from Theorem 1 [(2), (3) \(\rightarrow\) (1)] that \(\prod_x^y (1 + F + G) \) exists for \(a \leq x < y \leq b \).

Thus, it is only necessary to show that \(\int_a^b [1 + F + G - \Pi(1 + F + G)] \) exists and is zero in order to establish that \(F + G \in OM^o \) on \([a, b]\). Let \(\epsilon > 0 \).

Since \(F \in OM^o \) on \([a, b]\), there exists a subdivision \(D_1 \) of \([a, b]\) such that, if \(\{x_i\}_{i=0}^n \) is a refinement of \(D_1 \), then
We know that F is in O_{P}^{o} and O_{M}^{*} on $[a, b]$. Further, $F + G \in O_{P}^{o}$ on $[a, b]$ by Lemma 5 and $F + G \in O_{M}^{*}$ on $[a, b]$ by Theorem 1 [(2), (3) \rightarrow (1)]. Now, since $G \in O_{B}^{o}$ on $[a, b]$, it follows by using Lemma 6 that

$$
(LR) \int_{x}^{y} \prod_{i=1}^{x} (1 + F + G)
$$

exists and is

$$
\prod_{i=1}^{y} (1 + F + G) - \prod_{i=1}^{x} (1 + F)
$$

for $a \leq x < y \leq b$.

Since F and $F + G$ are in S_{1} and O_{M}^{*} on $[a, b]$, for each positive number β there exists a subdivision $\{x_{i}\}_{i=0}^{n}$ of $[a, b]$ such that, if $1 \leq i \leq n$ and $x_{i-1} < x < y < x_{i}$, then

$$
\left| 1 - \prod_{i=1}^{y} (1 + F) \right| < \beta \quad \text{and} \quad \left| 1 - \prod_{i=1}^{y} (1 + F + G) \right| < \beta.
$$

By Lemma 8, $G \in O_{A}^{o}$ on $[a, b]$. Further, F and $F + G$ are in O_{P}^{o} on $[a, b]$ and $G \in O_{B}^{o}$ on $[a, b]$. From these facts, it follows that

$$
\int_{a}^{b} \left| G(x, y) - (LR) \int_{x}^{y} \prod_{i=1}^{x} (1 + F + G) \prod_{i=1}^{y} (1 + F + G) \right|
$$

exists and is zero. Thus, there exists a subdivision D_{2} of $[a, b]$ such that, if $\{x_{i}\}_{i=0}^{n}$ is a refinement of D_{2}, then

$$
\sum_{i=1}^{n} \left| G_{i} - (LR) \int_{x_{i-1}}^{x_{i}} \prod_{i=1}^{x_{i}} (1 + F + G) \prod_{i=1}^{x_{i}} (1 + F + G) \right| < \frac{\epsilon}{2}.
$$

Let D denote the subdivision $D_{1} \cup D_{2}$ of $[a, b]$. Suppose $\{x_{i}\}_{i=0}^{n}$ is a refinement of D. Now,

$$
\sum_{i=1}^{n} \left| 1 + F_{i} + G_{i} - \prod_{i=1}^{x_{i}} (1 + F + G) \right|
$$

$$
= \sum_{i=1}^{n} \left| 1 + F_{i} + G_{i} - \prod_{i=1}^{x_{i}} (1 + F) + (LR) \int_{x_{i-1}}^{x_{i}} \prod_{i=1}^{x_{i}} (1 + F) \prod_{i=1}^{x_{i}} (1 + F + G) \right|
$$

$$
\leq \sum_{i=1}^{n} \left| 1 + F_{i} - \prod_{i=1}^{x_{i}} (1 + F) \right| + \sum_{i=1}^{n} \left| G_{i} - (LR) \int_{x_{i-1}}^{x_{i}} \prod_{i=1}^{x_{i}} (1 + F) \prod_{i=1}^{x_{i}} (1 + F + G) \right|
$$

$$
< \epsilon/2 + \epsilon/2 = \epsilon.
$$
Therefore, \(F + G \in O \mathcal{M}^\circ \) on \([a, b]\). Thus, (2) and (3) imply (1).

Proof of Theorem 2 [(1), (2) \(\rightarrow\) (3)]. The proof of Theorem 2 [(1), (2) \(\rightarrow\) (3)] is similar to the proof of Theorem 1 [(1), (2) \(\rightarrow\) (3)]. The only difference is that it is necessary to use Lemma 8 rather than Lemma 7. Thus, (1) and (2) imply (3).

Proof of Theorem 2 [(1), (3) \(\rightarrow\) (2)]. The proof of Theorem 2 [(1), (3) \(\rightarrow\) (2)] is similar to the proof of Theorem 1 [(1), (3) \(\rightarrow\) (2)]. As before, the only difference is that it is necessary to use Lemma 8 rather than Lemma 7. Thus, (1) and (3) imply (2).

The proof of Theorem 2 is now complete.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281