COMMUTATIVE REGULAR RINGS WITH INTEGRAL CLOSURE

BY

L. LIPSHITZ

ABSTRACT. First order conditions are given which are necessary for a commutative regular ring to have a prime integrally closed extension. If the ring is countable these conditions are also sufficient.

In [8] an example was given of a commutative regular ring with no prime model extension to a commutative integrally closed regular ring. In this paper we give (in §2) first order conditions which are necessary for a commutative regular ring, \(R \), to have a prime extension to an integrally closed regular ring. In the case that \(R \) is countable these conditions are also sufficient (§3). They are, however, not sufficient in the case that \(R \) is uncountable (§4).

In [1] and [5] (see also [6] and [9]) it was shown that the theory \(K_{CR}^* \) of integrally closed commutative regular rings without minimal (\(\neq 0 \)) idempotents is the model completion of the theory of commutative regular rings, \(K_{CR} \). In §5 we show that a model of \(K_{CR} \) has a prime extension to a model of \(K_{CR}^* \) (the theory of integrally closed commutative regular rings) if and only if it has a prime extension to a model of \(K_{CR}^* \).

1. Preliminaries. A commutative ring \(R \) with unit is called regular (in the sense of von Neumann) if \(R \) satisfies \(\forall x \exists y \left(x^2 y = x \right) \). \(B_R \) is the Boolean algebra of idempotents of \(R \). The operations of \(B_R \) are \(e_1 \cup e_2 = e_1 + e_2 - e_1e_2 \) and \(e_1 \cap e_2 = e_1e_2 \). \(S_R \) is the maximal ideal space of \(R \). It is well known that if \(R \) is regular and commutative then \(S_R \) is the Stone space of \(B_R \). In a natural way \(R \) is a ring of functions on \(S_R \). \((R \ni a \rightarrow a(\cdot) \) defined by \(a(s) = a + s \) in \(R/s \), for \(s \in S_R \) any maximal ideal of \(R \). If \(R \) is regular then \(R/s \) is a field.) It will be intuitively helpful to think of commutative regular rings as rings of functions in this way. If \(R \) is a commutative regular

Received by the editors July 14, 1974.
Key words and phrases. Commutative regular rings, integrally closed rings, prime model extensions.
1 This research supported in part by N.S.F. grant GP 43749.

Copyright © 1975, American Mathematical Society.
ring and \(e (\not= 0) \) is an idempotent of \(R \) then \(e \) is a \(\{0, 1\} \) function on \(S_R \).

There is a one-to-one correspondence between clopen subsets of \(S_R \), and idempotents of \(R \) given by \(e \in R \) correspond to \(\{ s \in S_R | e(s) = 1 \} = E_e \). We say that a relation among elements of \(R \) holds on idempotent \(e \) if for every \(s \in E_e \) the relation is true \(\mod s \). We say that a relation holds at a point \(s \in S_R \) if it is true \(\mod s \) in \(R/s \).

\(K_{CR} \) is the theory of commutative regular rings. \(K_{CR} = K_{CR} \cup \{ \text{every monic polynomial has a root} \} \) is the theory of integrally closed regular rings.

\(K^*_R = K_R \cup \{ \text{there are no minimal (}\mathfrak{p} \text{ not equal to 0) idempotents} \} \) and \(K^*_R = K_{CR} \cup \{ \text{there are no minimal (}\mathfrak{p} \text{ not equal to 0) idempotents} \} \) (cf. \([5]\)).

If \(T_1 \) and \(T_2, T_1 \subset T_2 \), are two theories and \(\mathcal{U} \models T_1, \mathcal{U} \subset \mathcal{Q} \models T_2 \) then we call \(\mathcal{Q} \) a prime model extension of \(\mathcal{U} \) to a model of \(T_2 \) if whenever \(\mathcal{Q}' \models T_2 \) and \(\phi: \mathcal{U} \rightarrow \mathcal{Q}' \) is an embedding, there is an extension of \(\phi \) to an embedding of \(\mathcal{Q} \) into \(\mathcal{Q}' \). \(\mathcal{Q} \) is called minimal if \(\mathcal{U} \subset \mathcal{Q}' \subset \mathcal{Q} \models T_2, \mathcal{Q}' \models T_2 \) implies \(\mathcal{Q}' = \mathcal{Q} \). It is well known (cf. \([7]\)) that if \(\mathcal{Q} \) is a minimal prime model extension of \(\mathcal{U} \) to a model of \(T_2 \), then every prime model extension of \(\mathcal{U} \) to a model of \(T_2 \) is isomorphic with \(\mathcal{Q} \).

If \(R \models K_{CR} \) and \(\overline{R} \) is a prime model extension of \(R \) to a model of \(K_{CR} \) then we call \(\overline{R} \) an integral closure of \(R \). It will be shown (Proposition 1) that such an \(\overline{R} \) is in fact minimal and hence is the unique integral closure of \(R \).

If \(p(x) \in R[x], R \models K_{CR}, \) then \(p \) is called irreducible if \(p(x) \) is irreducible at every point \(s \in S_R \), i.e. if for every \(s \in S_R \) there are no polynomials \(p_1 \) and \(p_2 \in R[x] \) such that \(p(x) = p_1(x)p_2(x) \) at \(s \) and degree\((p_1(x)) \) and degree\((p_2(x)) > 0 \) at \(s \). \(p(x) \) is called unambiguous if, at each \(s \in S_R \), \(p(x) \) is a power of a polynomial irreducible at \(s \), of degree \(> 0 \) at \(s \). It is shown in \([5]\) that if \(\phi(a_1, \ldots, a_n) \) is any quantifier free relation among \(a_1, \ldots, a_n \in R \models K_{CR} \) then there is an idempotent \(e \in R \) such that \(\phi \) holds at every point of \(E_e \) and fails at every point of \(S_R \setminus E_e = E_{1-e} \). Using this is not hard to see that the Euclidean algorithm holds in \(R \) and hence that if \(p(x), q(x) \in R[x] \) then \((p, q(x)) = (p(x), q(x)), \) the g.c.d. of \(p(x) \) and \(q(x) \), is an element of \(R[x] \). Using in addition the compactness of \(S_R \) it follows also that if \(p(x)|q(x) \) at each point of \(S_R \) then \(p(x)|q(x) \) in \(R[x] \). In obtaining \((p, q) \) from \(p \) and \(q \) it may be necessary to consider different cases of various coefficients vanishing or not on (a finite number of) different idempotents. This will often be the case in the arguments which follow. We shall not usually make explicit mention of this.

If \(k \in \mathbb{N} \) let \(e_k \) be the idempotent of \(R \) on which \(k \text{ (= 1 + \cdots + 1)} = 0 \) holds (and \(k \neq 0 \) holds on \(1 - e_k \)). Let \(p(x) \in R[x] \) be unambiguous and
monic of degree \(n > 0 \). On \(1 - e_{n!} \), by considering \((p(x), p'(x)) = p_1, (p_1(x), p_1'(x)) = p_2(x) \) etc. one can find an irreducible polynomial \(q_1(x) \) such that \(q_1(x)p(x) \) on \(1 - e_{n!} \). This procedure may fail on \(e_{n!} \), since at some point of \(e_{n!} \) we may have \(p'(x) = 0 \) (or \(p_1'(x) = 0 \) etc.). We can, however, find a polynomial \(q_2(x) \) on \(e_{n!} \) such that if \(s \in E_{e_{n!}} \) and \(\text{char}(R/s) = k \) then, at \(s \), \(p(x) = q_2(x)k^m \), for some \(m \in \mathbb{N} \), and \(q_2(x) \) is unambiguous on \(e_{n!} \). (Let \(e_k \) be the subidempotent of \(e_k \) on which \(p'(x) = 0 \). On \(e_k \) replace \(x^k \) by \(x \) in \(p(x) \) to get \(p_1(x) \). After a finite number of such steps one will obtain the required polynomial \(q_2(x) \).

Let \(T = K_{CR} \cup \{ \text{every monic polynomial of degree } n \} \) has an unambiguous factor \(\{ n \in \mathbb{N} \} \).

For terms used but not defined in this paper the reader is referred to [5] or [7]. Good references for the algebra in this paper are [2] and [3].

2. Necessity. In this section we show that if \(R \models K_{CR} \) then for \(R \) to have a prime extension, \(\overline{R} \), to a model of \(K_{CR} \) it is necessary that \(R \not\models T \).

We also show that if such an \(\overline{R} \) exists then it is unique, up to isomorphism.

Lemma 1. If \(R, R_1 \models K_{CR}, R \subseteq R_1 \) and \(\alpha \in R_1 \) satisfies \(p(\alpha) = 0 \) for some \(p(x) \in R[x] \) then every maximal ideal of \(R[\alpha] \) is of the form \((s \cup \{ q(\alpha) \}) \), \(s \in S_R \) with \(q(x)p(x) \) at \(s \) and \(q(x) \in R[x] \) irreducible at \(s \).

Proof. Let \(s' \in S_R[\alpha] \). Then \(s' \cap R = s \in S_R \). At \(s \) let \(p(x) = p_1(x) \ldots p_m(x) \) with \((p_i, p_j) = 1 \) at \(s \). Then \(p_1(\alpha) \ldots p_m(\alpha) = 0 \) so, since \(s' \) is maximal and hence prime, \(q(\alpha) = p_i(\alpha) \in s' \) for some \(i \). We must show that \(s \cup \{ q(\alpha) \} \) generates \(s' \). Let \(a \in s' \). Then either \(a = e \) for some idempotent \(e \in s \) or \(a(1 - e) \in R[\alpha] - R \) for every idempotent \(e \in s \). In the first case \(a \in s \). In the second \(a(1 - e) = q(\alpha)(1 - e) \) with degree \(q(x) > 0 \) at \(s \).

Then \(q(\alpha), (r, q(\alpha)) \in s' \) so \((r, q(\alpha)) \in s' \), so \((r, q) \neq 1 \) at \(s \), i.e., \(q(x)|\pi(x) \) at \(s \) and hence on some idempotent \(1 - e, e \in s \). Hence \(a \in \pi(x)|q(\alpha) \).

Lemma 2. If \(R, \alpha \) are as above then \(R[\alpha] \models K_{CR} \).

Proof. Let \(S' \) be the maximal ideal space of \(R[\alpha] \) and let \(q(\alpha) \in R[\alpha] \).

Without loss of generality we may assume that degree \(q(x) < \text{degree}(p) = n \).

Let \(u(x) = (p(x), q^n(x)) \) and let \(v(x) = p(x)/u(x) \). Then \((u(x), q(x)) = 1 \) and \(p(x)v(x)q^n(x) \) so if \(y \in S' \), \(q(\alpha) \neq y \) if and only if \(v(\alpha) \in y \). Since \((q(x), v(x)) = 1 \) there exist polynomials \(w_1(x), w_2(x) \) such that \(q(x)w_1(x) + v(x)w_2(x) = 1 \). Then \(q^2(\alpha)w_1(\alpha) = q(\alpha) - q(\alpha)v(\alpha)w_2(\alpha) \). But \(q(\alpha)v(\alpha) = 0 \) in \(R[\alpha] \) so \(q^2(\alpha)w_1(\alpha) = q(\alpha), \) i.e., \(R[\alpha] \models K_{CR} \).

Let \(\phi: R_1 \rightarrow R_2 \) be an embedding and let \(R_i \models K_{CR} \) and \(S_i \) be the
Stone space of R_i $(i = 1, 2)$. Define $\phi^*: S_2 \to S_1$ by $\phi^*(s') = \phi^{-1}(s')$, $s' \in S_2$. Then ϕ^* is a continuous mapping of S_2 onto S_1. If $s \in S_1$ we say s splits in R_2 if $\phi^{-1}(s)$ contains more than one point of S_2.

Lemma 3. (i) If R, α, p are as above with p irreducible at s then s does not split in $R[\alpha]$ and if N is a neighborhood of s (id$^{-1}\alpha(s)$) in $S_{R[\alpha]}$ then there is a neighborhood M of s in S_R such that id$^{-1}(M) \subset N$. (id: $R \to R[\alpha]$.)

(ii) If \bar{R} is a prime extension of R to a model of K_- then no $s \in S_R$ splits in \bar{R}.

Proof. (i) The fact that s does not split in $R[\alpha]$ follows from the irreducibility of $p(x)$ at s by Lemma 1. Let N be clopen in $S_{R[\alpha]}$. Then N is defined by some idempotent $q(\alpha) \in R[\alpha]$ by $N = \{s' \in S_{R[\alpha]}| q(\alpha)(s') = 0\}$. Hence $p(x)|q(x)$ at s and hence in some neighborhood M of s. Clearly id$^{-1}(M) \subset N$.

(ii) Let $s \in S_R$. There is an $R_1 \models K_-$ with $R \subset R_1$ such that s does not split in R_1. R_1 can be obtained by repeatedly adjoining roots of polynomials irreducible at s (more precisely (id$^{-1}(s)$)). Since \bar{R} is prime over R we have $R \text{ id} \bar{R} \supseteq R_1$. Since s does not split in R_1, $(\phi \circ \text{id})^{-1}(s)$ contains only one point of S_{R_1}. So id$^{-1}(s)$ contains only one point of $S_{\bar{R}}$.

Remark. If $R \subset \bar{R}$ are models of K_{CR} and no point of S_R splits in \bar{R} then id* is a homeomorphism and hence $B_R = B_{\bar{R}}$, i.e. R and \bar{R} have the same idempotents.

Proposition 1. If $R \models K_{CR}$ and \bar{R} is a prime extension of R to a model of K_{CR} then \bar{R} is minimal and hence unique.

Proof. From the above remark R and \bar{R} have the same idempotents. Every element of \bar{R} is algebraic over R, i.e. satisfies some $p(x) = 0$ for $p(x) \in R[x]$. Suppose $R \subset R_1 \subset \bar{R}$ with $R_1 \models K_{CR}$. Let $\alpha \in \bar{R}$ satisfy $p(\alpha) = 0$, $p(x) \in R[x]$. Let $p(x) = \Pi(x - \beta_i)$ in R_1. Then at each point of $S_{\bar{R}} = S_{R_1}$, α equals one of the β_i. Then there are idempotents $e_i \in B_{\bar{R}}$, $B_{\bar{R}}$ such that $\alpha = \Sigma e_i \beta_i$. Hence $\alpha \in R_1$, i.e. $R_1 = \bar{R}$.

Lemma 4. If $R \models K_{CR}$, $R \not\models T$ then there is a polynomial $p(x) \in R(x)$ and a point $s \in S_R$ such that $p(x)$ is irreducible at s but in every neighborhood N of s $p(x)$ is ambiguous.

Proof. Let $p(x)$ be a monic polynomial of lowest degree not having an unambiguous factor. Let $X = \{s \in S_R| \text{ at } s, p(x) \text{ is ambiguous}\}$. It is clear that X is open since if $p(x) = p_1(x)p_2(x)$ with $(p_1(x), p_2(x)) = 1$ at s then
this holds in some neighborhood of s. X cannot be closed. For if it were, X would be compact and equal to E_e for some idempotent e. Using the compactness of X we could factor $p(x) = q(x)r(x)$ on $X (= Ee)$ with both $q(x)$ and $r(x)$ having positive degree everywhere on X. Then at least one of $q(x)$, $r(x)$, say $q(x)$, would not have an unambiguous factor on X. There will be a subidempotent e_1 of e on which $q(x)$ is monic and does not have an unambiguous factor. Let $q(x)$ have degree m on e_1. Then $p_1(x) = q(x)e_1 + x^m(1 - e_1)$ does not have an unambiguous factor, is monic and is of lower degree than $p(x)$. This would contradict the way $p(x)$ was chosen. Consequently $\overline{X} - X \neq \emptyset$. Let $s \in \overline{X} - X$.

Theorem 1. If $R \models K_{CR}$ and $R \not\models T$ then R does not have a prime extension to a model of K_{CR}.

Proof. Let R_1 be a candidate for such an extension. Then by the remark following Lemma 3, $B_{R_1} = B_R$ and $S_{R_1} = S_R$. Let s, $p(x)$ be as in Lemma 4. Since we are only interested in $p(x)$ in a neighborhood of s we can take $p(x)$ to be monic. Let $p(x) = \Pi_{i=1}^n (x - \alpha_i)$ in R_1. Let $X = \{x \in S_R \mid \rho$ is ambiguous at $s\}$. Then as in the proof of Lemma 4, X is open. Let X_1, ..., X_{n-1} be disjoint copies of X, say $X_i = \phi_i(X)$, the ϕ_i homeomorphisms, and let $S' = S \cup X_1 \cup \cdots \cup X_{n-1}$. We define a topology on S' by specifying the basic neighborhood of points of S'. If $s \in X_i$, a basic neighborhood for s is any open subset of X_i containing s. Similarly if $s \in X$, a basic neighborhood of s is any open subset of $S - X$ containing s. If $s \in S - \overline{X}$ the basic neighborhoods of s are of the form $N \cup \bigcup_{i=1}^{n-1} \phi_i(N \cap X)$, where N is a neighborhood of s in S.

It is clear that S' is a totally disconnected compact Hausdorff space containing S. All we have done is glued on $n-1$ copies of X along the boundary of X. $R[\alpha_1, ..., \alpha_n]$ can be considered as a ring of functions on S' as follows: If $s \in R[\alpha_1, ..., \alpha_n]$ then $a(s)$ is defined for $s \in S$, if $s \in X_i$ let $a(s) = a(\phi_i^{-1}(s))$. Let α' be the following function on S'.

$$
\alpha' = \begin{cases}
\alpha_1 & \text{on } S, \\
\alpha_{i+1} & \text{on } X_i
\end{cases}
$$

Consider $R[\alpha']$. Since p is irreducible at s and $p(\alpha') = 0$, s does not split in $R[\alpha']$. Also by Lemma 2, $R[\alpha'] \models K_{CR}$. By repeatedly adjoining roots of polynomials which are irreducible at s we can find $R_2 \models K_{CR}$ with $R_2 \supset R[\alpha']$ and s not splitting in R_2. We shall show that there is no embedding $\phi: R_1 \rightarrow R_2$. Suppose there were. $\phi(\alpha_1), ..., \phi(\alpha_n)$ are roots of p in R_2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
with \(p(x) = \Pi_{i=1}^n (x - \phi(\alpha_i)) \) in \(R_2 \). \(\alpha' \) is a root of \(p \) in \(R_2 \), so there are idempotents \(e_i \) in \(R_2 \) such that, on \(e_i \), \(\alpha' = \phi(\alpha_i) \) and \(\bigcup e_i = S_{R_2} \). Hence in some neighborhood, \(N \) of \(s \) in \(S_{R_2} \), \(\alpha' = \phi(\alpha_s) \), say. By Lemma 3 there is a neighborhood \(M \) of \(s \) in \(S_R \) such that \(\phi^{-1}(M) \subset N \). Let \(s_1 \) be a point of \(M \) at which \(p \) is ambiguous, say \(p(x) = p_1(x)p_2(x) \), \((p_1(x), p_2(x)) = 1 \) at \(s_1 \) and suppose \(p_1(\alpha_1) = 0 \) at \(s_1 \in S_{R_1} = S_{R_2} \). Hence \(p_1(\phi(\alpha_1)) = 0 \) at each point of \(\phi^{-1}(s_1) \). But at some point of \(\phi^{-1}(s_1) \), \(p_2(\alpha') = 0 \) and hence \(p_1(\alpha') \neq 0 \). This contradiction shows that no such \(\phi \) exists.

3. Sufficiency in the countable case. In this section we show that if \(R \models T \), \(R = X \) then \(R \) has a prime extension to a model of \(K_{CR}^+ \).

Lemma 5. If \(R \models K_{CR} \) and \(p(x) \in R[x] \) is unambiguous and \(R[\alpha_i] \subset R_i \)
\(\models K_{CR} \) with \(p(\alpha_i) = 0 \) in \(R_i \) for \(i = 1, 2 \) then \(R[\alpha_1] \cong R[\alpha_2] \).

Proof. Since \(p(x) \) is unambiguous \(S_R = S_{R[\alpha_1]} = S_{R[\alpha_2]} \) and hence \(R[\alpha_1], R[\alpha_2] \) are both rings of functions on \(S_R \). The canonical mapping taking \(\alpha_1 \to \alpha_2 \) gives an isomorphism at each point, \(s \in S_R \) and hence gives an isomorphism of \(R[\alpha_1] \) and \(R[\alpha_2] \).

Lemma 6. If \(R \models T \) and \(p(x) \in R[x] \) is unambiguous and \(p(\alpha) = 0 \) then \(R[\alpha] \models T \). (\(R[\alpha] \subset R' \models K_{CR} \)).

Proof. We must prove that if \(q(x) \) is a polynomial in \(R[\alpha][x] \) then \(q \) has an unambiguous factor over \(R[\alpha] \). Let \(q = q(\alpha, x) \) and let \(q_1(x) = \Pi_{i=1}^n q(\alpha_i, x) \). (The \(\alpha_i \) are distinct roots of \(p \) in some extension, \(R' \) of \(R[\alpha] \) in which \(p \) splits. Since \(q_1 \) is symmetric in the \(\alpha_i \), \(q_1 \) is actually a polynomial in \(R[x] \), since every symmetric polynomial of the \(\alpha_i \)'s is a polynomial of the coefficients of \(p(x) \).) Let \(q_2(x) \) be an unambiguous factor of \(q_1(x) \) in \(R[x] \) such that \((q_2, q) \neq 1 \) at any point \(s \in S \). We shall show that in \(R[\alpha] \) \(q_2 \) can be factored as a product of unambiguous polynomials. This will give the desired result for \(q_1 \).

First we remark that we can take \(p \) and \(q_2 \) to be irreducible and separable. For let \(p_s \) and \(q_s \) be the irreducible separable polynomials corresponding to \(q \) and \(q_2 \) as in §1, and suppose that \(p_s(\beta) = 0 \) and that \(q_s \) is a product of unambiguous factors in \(R[\beta] \). It is clear that \(q_2 \) is then a product of unambiguous factors in \(R[\beta] \) and that these factors remain unambiguous in in \(R[\alpha] \). (This follows at each point of \(S_R \) from elementary theorems about fields.)

Hence we must show that if \(p(x), q(x) \in R[x] \) are irreducible and \(p(\alpha) = 0 \) then in \(R[\alpha] \), \(q(x) \) is a product of unambiguous (in fact irreducible) factors.
Let \(p(x) \) be monic of degree \(n \) and \(q(x) \) monic of degree \(m \). This may involve considering different cases on different idempotents. This is no problem since if \(e \in R \) is an idempotent then \(R = eR \oplus (1 - e)R \). Let

\[
T(t, u, x) = \prod_{\sigma \in S_n, \nu \in S_m} \left(x - \sum t_i \alpha_{\sigma(i)} - \sum u_j \beta_{\nu(j)} \right)
\]

where the \(\alpha_i \)'s are distinct roots of \(p \) and the \(\beta_j \)'s distinct roots of \(q \) and \(S_n \) is the symmetric group on \(n \) letters, \(S_m \) the symmetric group on \(m \) letters and the \(t_i, u_j \) are new variables. \(T(t, u, x) \) is a polynomial over \(R \) since it is symmetric in the \(\alpha_i \) and \(\beta_j \). Let \(\mu = m!n! + 1 \), and let \(T(x) = \prod T(t, u, x) \) where the product is taken over all vectors \(t \) and \(u \) with entries from the set \([1, 2, \ldots, \mu]\), if they are distinct. Recall that \(e_p \) is the idempotent on which \(p = 0 \) holds. On \(e_p \) for \(p < \mu \) these elements will not be distinct, so we must consider what happens on these idempotents separately. Let \(e_{p,k} \) be the subidempotent of \(e_p \) on which every coefficient of \(p(x) \) and \(q(x) \) belongs to the finite field with \(p^k \) elements (i.e. satisfies \(t^p - t = 0 \)). On each \(e_{p,k} \) the lemma follows by considering a finite number of different cases, each of which behaves just like a finite field. On \(f = e_p - \bigcup_{p \leq \mu} e_{p,k} \) there is a coefficient \(a \) (of \(p(x) \) or \(q(x) \)) such that \(a, a^2, \ldots, a^\mu \) are distinct at every point of \(f \). On this idempotent we can use this set of distinct elements instead of \([1, 2, \ldots, \mu]\).

Let \(T(x) = r(x)\prod_i r_i(x) \) be an unambiguous (in fact irreducible) factoring of \(T \) with degree \(r \geq \text{degree}(r_i) \) for all \(i \). Let \(\delta \) be a root of \(r \). Since \(r \) is unambiguous \(S_R[\delta] = S_R \). At each point \(s \in S_R, p(x) \) and \(q(x) \) split in \(R[\delta] \). This is clear since the degree \([R[\delta]/s : R/s] \) will be the degree of the splitting field \(F \) of \(p(x) \) and \(q(x) \) at \(s \) over \(R/s \), and \(R[\delta]/s \subset F \). Notice that if \(u(\delta) \) is a root of \(p \) (or \(q \)) at \(s \) then \(u(\delta) \) is a root of \(p \) (or \(q \)) in some neighborhood of \(s \). Since \(S_R \) is compact we can find \(\alpha_i(\delta), \beta_i(\delta) \in R[\delta] \) such that in \(R[\delta] \) \(p(x) = \prod_{i=1}^n (x - \alpha_i(\delta)) \) and \(q(x) = \prod_{i=1}^n (x - \beta_i(\delta)) \). The \(\alpha_i \) and \(\beta_i \) are polynomials in \(\delta \). Consider the following sets

\[
V_{ij} = \{1, \alpha_1^2, \ldots, \alpha_i^{n-1}, \beta_j^2, \beta_i^2, \ldots, \beta_i^k\}.
\]

Each element of \(V_{ij} \) is a linear (over \(R \)) combination of \(1, \delta, \delta^2, \ldots, \delta^{k-1} \) (\(k = \text{degree} \ r \) which are linearly independent over \(R \). Hence for each \(i, j \) there is an idempotent \(e_{ij} \) on which the set \(V_{ij} \) is linearly dependent over \(R \). \(e_{ij} \) can be found as the set where suitable determinants vanish. On \(e_{i,j+1} - e_{ij}, \beta_i \) satisfies an irreducible polynomial of degree \(j + 1 \) over
$R[\alpha_i]$. Also $e_{i,m-1} = 1$. It is now easy to see that we can piece together irreducible factors of $q(x)$ over $R[\alpha_i]$. This proves the lemma.

Theorem 2. If $R \models T$ and $\bar{R} = \mathbb{N}_0$ then R has a prime extension to a model of K_{CR}.

Proof. Let $\bar{R} = R[\alpha_i \mid i < \omega]$ be such that α_{i+1} satisfies an unambiguous polynomial over $R[\alpha_1, \ldots, \alpha_i]$ and $\bar{R} \models K_{CR}$. Since R is countable it is clear that such an \bar{R} exists by Lemma 6. Lemma 5 shows that \bar{R} is prime over R, since $R[\alpha_1, \ldots, \alpha_i][\alpha_{i+1}]$ is prime over $R[\alpha_1, \ldots, \alpha_i]$.

Remark. We have actually proved a little more than Theorem 2. We actually have that if $R \models T$ and $\{p_i \mid i \in \omega\}$ is a countable set of polynomials in $R[x]$ then there is a prime way to extend R to a model of K_{CR} in which all the polynomials $p_i(x)$ split.

Theorems 1 and 2 together give the following result of [4].

Corollary 1. If $R \models K_{CR}$ and $\bar{R} = \mathbb{N}_0$ then R has a prime extension to a model of K_{CR} if and only if $R \models T$.

In this countable case the necessity of T can be proved by using the elimination of quantifiers for K_{CR} (in the language with an additional function symbol f defined by $\forall x(x^2/f(x) = x \land x/f^2(x) = f(x))$, cf. [5]), and Ehrenfeucht's theorem.

4. The uncountable case. In this section we give an example of an $R \models T$, $\bar{R} = 2^{\mathbb{N}_0}$ without a prime extension to a model of K_{CR}. Let \overline{Q} denote the algebraic closure of the rationals and let $\{x_i \mid i < \omega\}$ be algebraically independent. Let $F = \overline{Q}(x_1, x_2, \ldots)$ and let \overline{F} be the algebraic closure of F. Let $R_1 = F^{\omega}$ and R_2 be the subring of R_1 of all sequences which are constant except on finite sets. There exist $2^{\mathbb{N}_0}$ sequences $f_a : \omega \to \{x_i \mid i < \omega\}$, $\alpha < 2^{\mathbb{N}_0}$ such that if $\alpha \neq \beta$ ($\alpha, \beta < 2^{\mathbb{N}_0}$) then $\text{range}(f_\alpha) \cap \text{range}(f_\beta)$ is finite.

Let $R_3 = R_2[f_a \mid \alpha < 2^{\mathbb{N}_0}]$ and let R be the smallest regular subring of R_1 containing R_3. It is not hard to show that $B_R = B_{R_2}$ (= all finite or cofinite subsets of ω) and that $R \models T$. Let R_4 be the subring of \overline{F}^{ω} of all sequences which are constant except on finite sets. R_4 is the prime extension of R_2 to a model of K_{CR}. Let R_5 be \overline{F}^{ω} be a model of K_{CR} containing R, with $S_R = S_{R_5}$ (= $\omega + 1$). We shall construct a model R_6 of K_{CR} such that there is no embedding of $R_5 \to R_6$, over R. This will show that R has no prime extension to a model of K_{CR}.

Let $\{\phi_\alpha \mid \alpha < 2^{\mathbb{N}_0}\}$ be all the distinct embeddings of R_4 into R_4 over R.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Notice that if $R_4 \subset R_6$ and $\phi: R_4 \to R_6$ is an embedding and $S_{R_6} = S_R$ then ϕ has at most one extension to an embedding $R_5 \to R_6$ since if $a \in R_5$ then $a e_i \in R_4$ for each $e_i = (\delta_{ij})_{j \in \omega}$ and $\phi(a)$ is determined by the $\phi(a e_i)$. For each $a < 2^{\aleph_0}$ choose $q_a \in \bar{F}^\omega$ such that $q_a = f_a$ and $\phi_a^{-1}(q_a) \notin R_5$ (i.e. there is no $b \in R_5$ such that $\phi_a(b e_i) = q_a e_i \forall i \in \omega$). Such a q_a exists since R_5 contains only countably many square roots of f_a.

Let R_6 be an extension of $R_4[q_a| a < 2^{\aleph_0}]$ to a model of K^{CR} with $S_{R_6} = S_R$. Suppose that $\phi: R_5 \to R_6$ were an embedding. Then $\phi|_{R_4} = \phi_a$ for some a. Let $x^2 - f_a = (x - h_1)(x - h_2)$ in R_5. Let $E_1 = \{s \in S_{R_6} | \phi(h_1)(s) = q_a(s)\}$ and $E_2 = S_{R_6} - E_1$. These must be clopen subsets of $S_{R_6} = S_{R_5}$ corresponding to idempotents e_1 and e_2, say. But then $q_a = \phi(h_1)e_1 + \phi(h_2)e_2 = \phi(h_1 e_1 + h_2 e_2)$ which is a contradiction.

The reason that R has no prime extension to a model of K^{CR} is that there is too much interweaving among elements of R. It may be possible, by excluding this kind of interweaving, to arrive at some quite general sufficient condition for $R \models T$ to have a prime extension to a model of K^{CR}.

5. Prime extensions to models of K^{CR}_*. In this section we show that every model of K^{*}_CR has a prime extension to a model of K^{*}_CR and that if $R \models K^{*}_CR$ then R has a prime extension to a model of K^{*}_CR if and only if R has a prime extension to a model of K^{*}_CR.

Proposition 2. Let $R \models K^{*}_CR$ then R has a prime extension to a model of K^{*}_CR.

Proof. Let X be the set of isolated points of S_R. For each $x \in X$ let C_x be a copy of the Cantor set. Let S^*_R be obtained from S_R by replacing each $x \in X$ by C_x (in the obvious way). R can be considered as a ring of functions on S^*_R (constant on each C_x). Let B_x be the set of idempotents corresponding to clopen subsets of C_x. Let $B = \bigcup x \in X B_x$ and let $R^* = R[B]$. It is clear that $R \subset R^* \models K^{*}_CR$. We must show that R^* is prime over R. So let $\phi: R \to R_1 \models K^{*}_CR$. Let e_x be the idempotent corresponding to $x \in X$. Observe that B_x is the unique countable atom free Boolean algebra. Hence for each $x \in X$ there is a copy of B_x, say B'_x with $\phi(e_x)$ as largest element (i.e. B'_x is a Boolean algebra of subidempotents of $\phi(e_x)$ with $\phi(e_x)$ as 1). Let $B^* = \bigcup x \in X B'_x$. Then ϕ extends naturally to an embedding of R^* onto $\phi(R)[B^*] \subset R_1$.

Proposition 3. If $R \models K^{*}_CR$ then R has a prime extension to a model of K^{*}_CR.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
K^*_CR if and only if R has a prime extension to a model of K^*_CR.

Proof. Proposition 2 shows that if R has a prime extension to a model of K^*_CR then R has a prime extension to a model of K^*_CR. Conversely suppose that R_1 is a prime extension to a model of K^*_CR. Let $X \subseteq S_R$ be the set of isolated points of S_R and let e_x be the idempotent corresponding to $x \in X$. Let $\nu: R \to R_1$ be the embedding of R in R_1 and let $x \in \nu^{-1}(x)$. Observe that if $x \in S_R - X$ then x does not split in R_1 since we can construct a model R_2 of K^*_CR containing R in which x does not split by first constructing R^* as in Proposition 2 and then extending R^* to a model of K^*_CR in which x does not split. Define \tilde{R}_1 as a ring of functions on S_R as follows: for each $a \in R_1$ let $\tilde{a}(x) = a(\nu^{-1}(x))$ for $x \in S_R - X$ and $\tilde{a}(x) = a(x)$ for $x \in X$; \tilde{R}_1 is the ring of functions \tilde{a} for $a \in R_1$. It is not hard to see that $R_1 \cong \tilde{R}_1$ (as constructed in Proposition 2). We omit the details. Suppose that $R \subseteq \tilde{R} \models K^*_CR$. There is an embedding $\phi: R_1 \to \tilde{R}^*$ since R_1 is prime over R. The correspondence $\tilde{R}_1 \ni a \to a (\in \tilde{R}_1^* = R_1) \to \phi(a) (\in \tilde{R}^*)$ defines an embedding of \tilde{R}_1 into \tilde{R}. Hence \tilde{R}_1 is the required extension of R.

Remark. If $R \models K^*_CR$ has a prime extension to a model of K^*_CR (or K^*_CR) then this prime extension is unique. If S_R is not perfect then it is not minimal.

Proposition 3 combined with Theorems 1 and 2 shows that for $R \models K^*_CR$ to have a prime extension to a model of K^*_CR it is necessary that $R \models T$ and that if $\tilde{R} = \mathcal{N}_0$ then this condition is also sufficient.

REFERENCES

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907