On the Calkin algebra and the covering homotopy property

Author:
John B. Conway

Journal:
Trans. Amer. Math. Soc. **211** (1975), 135-142

MSC:
Primary 46L05; Secondary 46M20, 55F05, 58G10

DOI:
https://doi.org/10.1090/S0002-9947-1975-0399875-4

MathSciNet review:
0399875

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a separable Hilbert space, the bounded operators on the ideal of compact operators, and the natural map from onto the Calkin algebra . Suppose *X* is a compact metric space and is a continuous function such that is a -isomorphism for each *t* and such that there is a -isomorphism with . It is shown in this paper that if *X* is a simple Jordan curve, a simple closed Jordan curve, or a totally disconnected metric space then there is a continuous map such that and . Furthermore if *X* is the disjoint union of two spaces that both have this property, then *X* itself has this property.

**[1]**Huzihiro Araki, Mi-soo Bae Smith, and Larry Smith,*On the homotopical significance of the type of von Neumann algebra factors*, Comm. Math. Phys.**22**(1971), 71–88. MR**0288587****[2]**Lawrence G. Brown,*Operator algebras and algebraic 𝐾-theory*, Bull. Amer. Math. Soc.**81**(1975), no. 6, 1119–1121. MR**0383090**, https://doi.org/10.1090/S0002-9904-1975-13943-7**[3]**L. G. Brown, R. G. Douglas, and P. A. Fillmore,*Extensions of 𝐶*-algebras, operators with compact self-commutators, and 𝐾-homology*, Bull. Amer. Math. Soc.**79**(1973), 973–978. MR**0346540**, https://doi.org/10.1090/S0002-9904-1973-13284-7**[4]**L. G. Brown, R. G. Douglas, and P. A. Fillmore,*Unitary equivalence modulo the compact operators and extensions of 𝐶*-algebras*, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 58–128. Lecture Notes in Math., Vol. 345. MR**0380478****[5]**Paul R. Halmos,*A Hilbert space problem book*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0208368****[6]**Jerome Kaminker and Claude Schochet,*𝐸𝑥𝑡(𝑋) from a homological point of view*, Proceedings Conference Operator Theory (Dalhousie Univ., Halifax, N. S., 1973) Springer, Berlin, 1973, pp. 129–140. Lecture Notes in Math., Vol. 345. MR**0448119****[7]**Ernest Michael,*Continuous selections. I*, Ann. of Math. (2)**63**(1956), 361–382. MR**0077107**, https://doi.org/10.2307/1969615**[8]**Frigyes Riesz and Béla Sz.-Nagy,*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46L05,
46M20,
55F05,
58G10

Retrieve articles in all journals with MSC: 46L05, 46M20, 55F05, 58G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0399875-4

Keywords:
Operators on a Hilbert space,
Calkin algebra,
covering homotopy property

Article copyright:
© Copyright 1975
American Mathematical Society