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ABSTRACT.   It is not known whether or not the Jacobi-Perron Algorithm

of a vector in Rn_x, n > 3, whose components are algebraic irrationals, always

becomes periodic.  The author enumerates, from his previous papers, a few in-

finite classes of real algebraic number fields of any degree for which this is the

case.   Periodic Jacobi-Perron Algorithms are important, because they can be

applied, inter alia, to calculate units in the corresponding algebraic number

fields.   The main result of this paper is expressed in the following theorem:
3

There are infinitely many real cubic fields Q(w),   w    cubefree, a and T natural
2

numbers, such that the Jacobi-Perron Algorithm of the vector (w, w  ) becomes

periodic; the length of the primitive preperiod is four, the length of the primi-
3

tive period is three; a fundamental unit of Q(w) is given by e = a  T + 1 — aw.

0. Introduction. The problem of calculating a system of fundamental units

in algebraic number fields of degree « > 2 is still an open and challenging question.

Dirichlet's famous theorem states only that the basis of the group of units in such

fields is finite, and he also gives the exact number of elements of the basis of this

group for a given field.  But neither he nor his successors who developed the the-

ory of algebraic numbers succeeded in stating a constructive method to calculate

a system of fundamental units for an algebraic number field.

Jacobi [5] invented an algorithm for real cubic algebraic number fields

which, as will be shown later, would have solved this problem.  But he either did

not know it, or was not concerned about units; so did Perron [8] who generalized

Jacobi's algorithm for any real algebraic number field of degree n > 3.  In honor

of these two great mathematicians, the author [2(a)] has named this algorithm

"the Jacobi-Perron Algorithm", abbreviated!. P. A., and has generalized it in [2(b)].

A breakthrough in finding a fundamental unit in (not totally) real numerical cubic

algebraic number fields started with Voronoi [10] whose algorithm was based on

ideas of Minkowski. His algorithm was recently generalized by Bilevich [4].  Lon-

don and Finkelstein [6] applied Voronof s and Bilevich's algorithm to the solution

of Mordell's equation y2 — k = x3. An important algorithm for the calculation

Received by the editors August 13, 1974.

AMS (MOS) subject classifications (1970).   Primary 10A30, 12A30, 12A4S.

Copyright © 1975. American Mathematical Society

295



296 LEON BERNSTEIN

of units in algebraic number fields is due to Bergman [1]. Significant contribu-

tions to the theory of units in rings of algebraic number fields have been made

by Zassenhaus [11].

In this paper the author states a class of infinitely many (not totally) real

cubic algebraic number fields whose bases become periodic by the J. P. A. and

states, in a simple explicit form, a fundamental unit which is calculated from the

period or preperiod of the J. P. A.   Since some readers may not be famUiar with

the J. P. A., it shall be recalled in the following

Definition.  Let a^ be a vector in the real Euclidean vector space Rn_x,

viz.

(0.1)      *(0) = (a(x°\ a2°\ ..., a<?2x)      (n > 2, a, G Rx, i = 1,. . . , n - 1).

A sequence (a^> of vectors in Rn_x is called the J. P. A. of a^°\ if

flC+i) = (a(p - b<p)-x(aM - &<»>,. . . ,a^x - »<5,. o

(0-O¿l(...),

«M**f>;*«-!■{«»>]      (i = 1, ...,«- 1);

[x] is the greatest rational integer contained in x. D

Jacobi and Perron called their algorithms "periodic", if there exist nonnegative

rational integers /, m with / > 0, m > 1, such that

(0.3) a(v)=a(v+m)      („ = /,/ + 1, ...).

For min / and min m the sequences c/°\ a^x\ . . . , a^-1* and a^l\ a^l+x\ . . . ,

a(i+m-i) are caiieci respectively the "primitive preperiod" and the "primitive

period" of the J. P. A., / and m-their lengths. If / = 0 the J. P. A. is caUed

"purely periodic". The main result of this paper is stated in the foUowing

Theorem. Let

(0.4) m=a6T3 + 3T(a3T + 1);       a,TGN;m cubefree.

Let Q(w), w3 =m, be the real cubic field generated by adjunction ofw to

the field Q of rationals.  Then the J. P. A. of a(0) = (w, w2) is period; the length

of the primitive preperiod of this J. P. A. equals I = 4, the length of its primitive

period equals m = 3. A fundamental unit of Q(w) is given by

(0.5) e = 1 + a3T - aw.  D

The reader should note that w, w2, as they appear in a(0), is not a basis of

Q(w); such would be given by 1, w, w2. Jacobi and Perron used the homogeneous

notation a(0^ — (1, w, w2), while the author uses the nonhomogeneous notation

fl<°) = (w, w2).
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The author is deeply indebted to the referee for his most valuable improve-

ments and corrections of this paper.

1. Previous results of the author. In [8] Perron proved that if the J. P. A.

of a vector aS ' = (a^ ', . . . , a„Jx) becomes periodic, then the components

a^\ . . . , a^2x belong to an algebraic number field of degree < «, and if they

are linearly independent, the degree of that field is exactly n. The inverse problem,

whether the J. P. A. of a vector a^0^ whose components belong to an algebraic

number field of degree « always becomes periodic, is still challengingly open.

Only a few numerical examples of periodic J. P. A. for real cubic algebraic num-

ber fields were known.  It was not until some fifteen years ago, that the author

succeeded in finding a few infinite classes of algebraic number fields, so that the

J. P. A. of a vector a^0^ with components properly chosen from these fields be-

comes periodic. We shaU enumerate shortly these periodic J. P. A.'s.

(1) In [2(c)] the author proved:   Let w" = D" + d; n > 2, D, d E N; D >

(n - 2)d.  Then the J. P. A. of the vector a^ = (w, w2, . . . , w"~x) becomes

periodic; the length of the primitive preperiod / = n - 1, the length of the primi-

tive period m = « if d ¥= 1, and m = 1 if d = 1.

(2) In [2(d)] the author proved:  Let w" = D" - d; « > 2, D, d E N; D

> 2(« - T)d. Then the J. P. A. of

fl(°) = (a<°>, . . . , an°\),   «<°> = £ (" - s - 1 + *)*-&
/=o \ i /

(s = l,...,«-l)

is purely periodic and the length of the primitive period m = «2 if d ¥= 1 and

«i = n if d — 1.

(3) In [2(e)] the author proved:  Let w3 = D3 + 3D; D > 2, D E N.

Then the J. P. A. of a^ = (w, w2) becomes periodic; the lengths of the primi-

tive preperiod and the primitive period are / = m = 4.

(4) In [2(f)] the author proved: Let w3 = D3 + 6D;D = 2K, K = 1, 2,

.... Then the J. P. A. of a^ = (w, w2) is periodic; the length of the primitive

preperiod is / = 4, the length of the primitive period is m = 8.

(5) In [3(a)] Hasse and the author proved:  Let Pn(x) = (x - D) (x - Dx)

••• (x-Dn_l)-d,n>2,dEN,D>Dx > • • • >Dn_x;D - D¡ >

2d(n - 1) (i = l,...,n-l);d\D,d\Dt  (i = 1, . . . , « - 1). Then Pn(x)

is irreducible over Q and has « real roots.  Let w, D < w < D + 1, be the largest

of these n roots. Let P¡¡ = P¡ = w - D¡   (i = 1,...,«- 1); Pik = P¡P¡+ x • • •

Pk (1 < i < k < « — 1). Let a^ be a vector with the components

fl<°> = d-x(w,- D)PxP2+sn_x  (s = 1, ...,«- 3);
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í¿ =d-\w-D)Px,     •»>,-/».

Then the J. P. A. of a^ is purely periodic, and the length of its primitive period

is m = n(n — 1) if c7 i=- 1, and m = « - 1 if ci = 1.

Periodic J. P. A.'s are useful for approximating algebraic irrationals by

rationals, as was shown by the author in [2(g)].   Another important application is

the calculation of units, as was mentioned in the. previous chapter. In [3(b)]

Hasse and the author proved the

Basic Theorem. Let the J. P. A. ofa^ = (ax,. . . , an_f) be periodic;

let I be the length of its primitive preperiod, m the length of its primitive period;

then
l+m-l

(i.i) •- n -a,/=/
is a unit in the field generated by the components of a^ over Q.

By applying formula (1.1) to the periodic J. P. A. as outlined in (1) and

(2) of this section the authors found that

(1.2) ek = (w - D)~k(wk - Dk),     fc I«, fc > 1,

are units in the corresponding fields of degree «. The authors could not decide

whether the efc belong to a system of independent units of the corresponding field.

By applying formula (1.1) to the periodic J. P. A. as outlined in (5) of this

section, Hasse and the author found in [3(b)] that

(1.3) ek=d-x(w-Dk)",      fc=l,...,«-l,

are units in the corresponding field and proved their independence.

In [2(h)] the author proved that, in the field Q(w), w=D3 +k,DGN,

fc| 3D2, e.= k~x(w - D)3 is a fundamental unit.  He proved this independently,

not using (1, 1). For fc = 1, the fundamental unit is ex — w - D with the

exception D = 3, where ex is the square of a fundamental unit. When fc = 1,

and with the exception of D = k = 2, where e is the square of a fundamental

unit, e = fc_1(w - D)3 is always fundamental.

For « = 4, 6, Stender [9] proved that the units ek from (1.3) form a sys-

tem of independent units.

The difficulty in calculating units from formula (1.1) stems, of course, from

the necessity that the J. P. A. become periodic.  But this happens very rarely, and

apart from the few classes of infinitely many algebraic number fields, found by

the author, no others are known. That the J. P. A. can be used for the calculation of

units in infinitely many algebraic number fields, without knowing whether or not

the corresponding J. P. A. becomes periodic, was proved by the author in [2(f)]
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where he stated:

Theorem.   Let w be a real root of an nth degree polynomial and Q(w)

the algebraic number field generated by adjunction of w to Q; let

(1.4) flO) = (fl(0)(w)>fl(0)(w)> . . . ;a(0)i(w))

be a vector whose components a¡(w) (i = 1, ...,« — 1) are algebraic integers

in Q(w). Let the components of the vectors a^  (v = 1,2, ...) in the J. P. A.

of a^ be rationalized, viz.

C^+C^. w + du> w2 + • • • + C(u), .wn~x .
(y)   _        0,' 1,1_2jj_W—1,1_

(U)' K

Mv EN; dfl E Z (/ = 0, 1, . . . , « - 1; i = 1, . . . , « - 1).

//, for a certain v > 1, Mv = 1, then

e = J] «i° , =4ü) + a(f>A$+x) + 4ü)4[,ü+2)
(1.6)

4. . . . + a(v)    ¿(u+n-l)

where the 4^ are obtained from the recursion formula

4(°) = l;4^)=4(2) = -.-=4("-1) = 0;

4(u+n) _

(1.7)
(v = 0,1,2,...),

is a unit in Q(w).

Of course, whether for every J. P. A. of a(0> = (a(,0)(w), . . . , a^^w))

there exists a v such that Mv = 1 could not be decided. But in [2(f)] he used

formula (1.6) successfully in order to calculate a unit in Q(w), w3 = m, m EN,

Km < 1000, for almost all m. In [2Q)] the author has proved:

Theorem. Let m = a2(a2v3 + 1) (a2v3 + 2), a,vEN; let w3 = m.  Then

in the J. P. A. ofa^ = (w, w2), and with the notation (1.5), Mx0 = l,and a

unit is calculated from e = 4^10) + a[10)4^1; + fl(I0)4<12), and its inverse has

the form e~x = 1 - 3v(a2v3 + l)w + 3v2w2, which is a fundamental unit in

2. The J. P. A. of a<°) ■ (w, w2), w3 = a6T3 + 37'(a37'+ 1). In this

section we prove the first part of the main theorem of this paper as stated at the

end of the introduction. We recall the hypotheses of this theorem:  Let m =

w3 = fl6r3 + 2T(a3T + 1); a, TEN, Q(w) the real cubic algebraic number

¿(»+«) =4<,u> + e<u)4^+1) + • • • + é<«2i4°+"_1)
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field generated by adjunction of w to Q. Then the J. P. A. of a^ - (w, w2) is

periodic: the length of the primitive preperiod is / = 4, the length of the primi-

tive period equals three.

Proof.  The J. P. A. of a^ is the sequence <a^>, where the vectors a^

(v = 1, 2, . . . ) are obtained successively from (0.2) by

/4U) - bi2ü)     1    \
fl(»+i)=p-L.-i-       („-0,1,...),

Yp-b^p   aP-b^p
(2.1) V * '        ' X '

bP = [aP];     bP = [a^].

In order to rationalize the denominator aP - bp in (2.1), the author used the

formulas given in [2(f)].  Let

¡aw2 + b„w + c„    ^„w2+77w + C

\ Mu M
(2.2) N " »

(v = 0,l,...);m = w3.

Then the vector

/a , ,w2 + b  , . w + c„ , .   A  ,,w2 + B ,.w + C ,.\
(u+1)       I    "    l v v v       \

" ~\ M x, "' M . , J\ v+1 u+l /

is calculated by means of the recursive formulas

bl - «„< = MoAv+1 ;   mal - bA = V»+1 ;

c¿-mavbv=MvCv+1; <-c„ - üf„„<»>;

mKB»+l +bvAv+l) + CvCv+l = MVMv+l>

(2.3)

m

\Cv+1+BVBV+l+C'vAV+l=Mva»+l>

^A+l+5UCu+l+CX+l   = Kbv+l>

(a„bv+i +bvav+i)+cx+i -*„w c:=c, - v?*-

We shall now carry out the J. P. A. of cz(0) = (w, w2), w3 = m = a6T3 +

3T(a3T + 1), by means of formulas (2.3). We first need in order to find the vec-

tors b^ = (bp, bP) a good approximation for w and w2. We obtain from

w = a27; [1 + 3a~6T-2(a3T + I)]113 the workable approximation

w = a2T + a~x -(2a3T+ l)a-X0T-3;
(2.4)

w2 =aAT2 + 2aT + a~2 -(2a3T+ l)a~sT-*.
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We shall now write down the successive vectors a^ and b^  (v = 0, 1, . . . )

without giving the calculations of every single operation-these would fill a whole

book. The patient reader will enjoy verifying these results.

(2.5) a(°) = (w, w2).

(2.6) ¿(0) = (a2T, a4 T2 + 2aT).

(1) = /- 2a7V2 + T(a3T + 3)w + a2T2(a3T + 3)

\ 3T(a3T+l)
(2.7)

w2 +a2Tw + a4T2\

3T(a3T+l)       /

(2.8)    e(1) = (0,a).

(2) _ /- aw2 + (2a3r + 3)w - a2T(a3T + 2)

\ T(3a6T2 + 10a3r+9)
(2.9)

(a3T+3)w2 +a2T(a3T+ l)w + aT(a3T + 2)(a3x"+ 3)\

r(3a6r2 + ioa3r+9) /

(2.10) ¿>{2) = (0,a).

(2.11) a(3) = (w + a2T, w2 + a2Tw + aT(a3T + 1)).

(2.12) b(3) = (2a2T, 3a*T2 + AaT).

,~   «     X4ï     /- 3a7V2 + 37V + 3a2T2(a3T +2)  w2 + a27V + a4T2 \
(2.13) a<4> =-,-1:

\ 3r(a3r+l) 3T(a3T+l)      I

(2.14) //4> = (0,a).

(2 15)   a<5> = (   w~g2r     ^2+a2^ + ana3x"+3)\

W(a3r+1)'       3J(a3r+l) /

(2.16) ¿><5> = (0,a).

(2.17) a<6> = (u> + 2a2r, w2 + a2 Tw + a472).

(2.18) Z><6> = (3a27\ 3a4J2 + 3aT).

(2.19) a<7>=a<4>.

By formula (2.19) the first part of our main theorem is completely proved.
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3.  A fundamental unit in Q(w). In this section we shall prove the second

part of our main theorem, viz.:   a fundamental unit in Q(w), w3 = m = a6T3 +

3T(a3T + 1), is given by e = 1 + a3T - aw.   Since M3 = 1 according to (2.11),

we shall calculate a unit in Q(w) by (1.6) which, in our cubic case, takes the form

(3.1) ex=A^+a\3U^+a23U(05\

Since b^ = b^ = (0, a), we calculate easily from (1.7), for n = 3,

(3.2) 43> = 1;     A^=a;     4<,5>=a2.

Since, from (2.11), a(3) = (w + a2T, w2 + a27\v + aT(a3T + 1)), we obtain

from (3.1)

e. - 1 + a(w + a2T) + a2(w2 + a2Tw + aT(a3T + 1)),

(3.3)
ex = (a3T + l)2 + a(a3T + l)w + a2w2.

From (3.3) we obtain

1
•Í1-

(a3T+ l)2 +a(a3T+ l)w + a2w2

C\ 4)                                 a3T + 1 - aw »_ . ,
V-V =-= a3 T + 1 - aw,

(a3T+ l)3 -a3w3

exx =e = a3T+ 1 -aw.

We shall also calculate a unit from formula (1.1) which in our case takes the form

(3.5) e2=a(4>a2s>a2«>.

Substituting the values of a[4\ a<s), a<6) from (2.13), (2.15), (2.17), we obtain,

after some lengthy calculations,

(3.6) x?2=a2w2+a(a3r+ l)w + (a3T + l)2 =ex,

so that the formulas (1.1) and (1.6) lead to the same result. This does not always

happen; as the author has shown in [2(i)], very often e2 = e2.

We shall now show that e = a3T + 1 — aw is a fundamental unit in Q(w),

N(e) = 1. Nagell [7] has proved that if a unit is of binary form as in (3.4), then

it is either a fundamental unit or the square of a fundamental unit in the corre-

sponding field. The reader will have no difficulties in verifying the inequalities

(3.7) 0<e = a37/+ 1 -aw<l.

Presume e is the square of a unit. Then, by Dirichlet (see e.g. [12]),
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ew =x +yw + zf~xw2, w3 cubefree,      w3 = f2g,

(3.8) w3#±l(mod9),   /, g GN;x, y, z G Z;

eh = l/3(x +yw + zf~xw2), w3 cubefree, w3 = f2g,

w3 = ±l(mod9),   fgGN.x.y.zGZ.

In the first case of (3.8), Q(w) is called a field of first kind, in the second case-

a field of second kind. The only interesting case is the second kind. The first

kind need not be considered, since Nagell [7, p. 226] proved for this case that

only for m = 20 a square of a unit can be of the form a + bw.   For fields of the

second, we obtain from (3.8), putting p = exp 27T//3,

x+yw + zf~lw2 =3eVl,

(3-9) x+ywp+zf-xw2p2=3e"Á,

x + ywp2 + zf~iw2p = 3e"Vl.

From (3.9) we calculate x, y, z:

x = e* + e* + e"Vl,

(3.10) y = „"V + pV* + pe"*),

i-/w-V + p«*+pV*).
Now |e| < 1, |ee'e"| = 1, hence

(3.11) |e'l=|e"l>l.

We further obtain |e'| = \a3T + I - awp\<a3T + 1 + aw <a3T + 1+

a(a2T + a~x),

(3.12) \e'\< 2(1+a3T).

From (3.10), (3.11), (3.12) we now obtain

(3.13) IvKw- x(l +2(2(1 +a3T)'A)).

If e were to be a square of a unit, we would obtain from the second equation of

(3.8), e = 9~x(x + yw + zf~xw2)2, hence, by comparison of coefficients of

powers of w,

9(1 +a3D=x2 + 2fgyz,

(3.14) _ 9a = 2xy + gz2,

0 = y2 + 2XZ/-1.

We shall show that for fixed upper bounds for a and T, y = 0, so that from

(3.14) also z = 0, which is impossible. For (a, T) = (1,1), m = 7 ^ ± 1(9).  For

(a, T) = (1, 2), m = 26 = -1(9).  From m = f2g it follows in this case that
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(/. g) = 0, 26).  From the first equation of (3.14) we obtain 27 = x2 + 52yz.

The reader will easily verify from (3.14) (second and third equations) that^z > 0,

hence 27 = x2 + 52yz is impossible. The reader should also note that for m

to be = ±1(9), neither a nor T can be a multiple of 3.  For (a, T) = (2, 1), m =

91, (f, g) = (1,91), and from (3.14), 81 = x2 + 182yz, which is also impossible

for .yz > 0. The next smallest value is assumed by m for (a, T) = (1, 5), m =

215 = —1(9). We shall therefore presume in our further investigations that m >

215. We now obtain from (3.13): \y\ < w~x + (2(2(1 + a3T)w~2)Vi). From

(2.4) w2 > a4T2 + 2aT + 1, hence

(3.15) \y\<w~x +2(2a-xT-x)v\

Since w3 = m > 215, w > 215xI3, and in view of having substantially increased

the second summand on the right side of | y I, we can accept the proper approxi-

mation w > 2161/3 = 6, hence from (3.15)  \y |< 6_1 + 2(2a-17,_1)'/2. We

are looking for those values of (a, T), for which (2a~xT~x)Vl < 5/12. This is

equivalent to

(3.16) aT> 288/25 > 11.

Having excluded the cases (a, T) = (1, 1), (1, 2), (2,1), and taking into account

that a and T are not multiples of 3 and that m is congruent ± 1(9), this leaves us

with the following cases:

a = 1, T=5, m = 215   -1(9),

a-I, T= 11, m = 1727   -1(9),

a = 2, T = 4, «i = 4492   1(9),

(3.17) fl = 4j 7-=2j m = 33542   -1(9),

a = 5,   T= I,       m = 16003   1(9),

a = 8,   T= 1,      «i = 263683   1(9),

a = 11, T= 1,      m = 1775557   1(9).

We have the factorization

215 = 5.43,

1727= 11.157,

4492 = 22.1123,

(3.18) 33542 = 2.31.541,
16003 = 13.1231,

263683 = 7.139.271,

1775557 = 7.253651.

In all these cases, with the exception of 4492, we obtain f=l,g = m.   From the

first equation of (3.14) we therefore obtain

9(1 +a3T) = x2 + 2(a6T3 + 37(1 +a3T))yz
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which is impossible for the values of (a, T) in (3.17) and with^z > 0. For m =

4492,/= 2, g = 1123, and we obtain from (3.14)  9(1 + a3T) = x2 + myz =

x2 + 4492 .yz, or 9(1 + 8.4) = x2 + 4492yz, which is also impossible. Thus the

proof that e is a fundamental unit is completed.

Concluding, we shaU still show that there exist only a finite number of values

for a and T, hence of m, for which m is not cubefree. We have, presuming the

opposite, a6T3 + 3a3 T2 + 37 = tu3, or, multiplying both sides by a3, a9 T3 +

3a6T2 + 3a3T+ 1 - 1 =ta3u3,(a3T+ l)3 - tz3 = l,v3 - tz3 = l;a3T +

1 = v, au = z. Now, by the Nagell's theorem [7], which is a special case of the

Thue-Siegel theorem,b3 - tz3 = 1 has at most one solution for a fixed t. This

proves our claim. In the same way it is easily verified that m cannot be a perfect

cube. In this case f = l,u3-z3 = l which has only the trivial solutions (v, z) =

(1,0) or (0,-1).
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