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ABSTRACT.   In the first portion of this paper a structure theorem for

semiprimary hereditary rings is given in terms of M XM "triangular" row-finite

matrices over a division ring D.   This structure theorem differs from previous

theorems of this type in that the representation is explicit in terms of matrices

over a division ring.   In the second portion of this paper we are able to apply

the results of Gordon and Small to obtain a structure theorem for semiheredi-

tary and left hereditary rings which are left orders in a semiprimary ring.   In

the case of the left hereditary rings, the representation is explicit in terms of ma-

trices over left hereditary Goldie prime rings and their respective classical left

quotient rings.   As an application we obtain, by a different method, a non-

Noetherian generalization of a result of Chatters which states that a two-sided

hereditary Noetherian ring is a ring direct sum of an Artinian ring and a semi-

prime ring.

1. Preliminaries. Throughout this paper all rings R are assumed to be as-

sociative with multiplicative identity, and all R-modules will be unitary.  A right

or left F-module will be denoted by MR or RM respectively.  The socle of an R-

module M will be denoted by soc (M).

If F is a ring, the Jacobson radical of F will be denoted by J(R), or just J

if there is no ambiguity. The prime radical of a ring R is denoted by N(R) or

simply N. Semisimple shall mean semisimple Artinian.  A ring R is semiperfect

[3] if R/J is semisimple and idempotents can be lifted modulo /.  A ring R is

semiprimary if R is semiperfect and / is nilpotent.  In this case N = J.

The module M is of finite (Goldie) dimension over R if every direct sum of

nonzero submodules of M contains only a finite number of summands. We say

that R is left finite dimensional if RR is of finite dimension.

If R is left nonsingular, then R possesses a maximal left quotient ring
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(MLQ) T which is a regular ring [21].  If R is left finite dimensional, then the

MLQ of R  is semisimple [28].

A nonzero element of a ring R is regular if it has zero left and right anni-

hilators.  A ring Q is said to be a classical left quotient ring of R (/? is called a

left order in Q) if (i) R C Q, (ii) every element of Q has the form c~xa where

a, cGR with c regular in R, and (iii) every regular element of R has an inverse

infi.
For all homological notions, we refer the reader to [4].

Let R be a semiperfect ring.   Then R = ©j <l<n 2j <l<m. Retj where

the e¡j are primitive idempotents and Re¡- ä Re¡'■• if and only if / = i.  Let e =

ei i + * * * + e„i •  Then the ring eRe = R' is a direct sum of pairwise noniso-

morphic primitive left ideals and is semiperfect. R' is. called the basic ring of R

and R' is unique up to isomorphism [15].  The ring R may be recovered from

the ring R'.   In fact, R may be taken to be the ring of all n x n blocked matrices

\Bny . . . BnnJ

where B¡- is the e¡R'e¡ — e.R'ej bimodule of m¡ x m¡ matrices with entries in

e¡R'e- [15].  Furthermore it is well known [15] that R and R' are Morita equiva-

lent.  Hence we may reduce the study of the representation theory of semiper-

fect rings to that of semiperfect basic rings.

If D is a division ring and if / and J are sets, then an / x J matrix over D

is a function from I x J to D. Multiplication of row-finite I x I matrices can be

defined in a natural way, and there is the usual correspondence between linear

transformations and matrices.  The interested reader may consult Jacobson [20,

Chapter IX].

A ring is said to have unmixed characteristic if as an abelian group it is p-

primary or torsionfree.  A ring R is said to have uniform characteristic if every

nonzero element of R has the same additive order.

Proposition 1.1. LetR bean indecomposable semiprimary ring.  Then R

has unmixed characteristic.

Proof.   If (i?, +) is a torsion group, then it has bounded order since R

has only finitely many nonisomorphic simple modules.  Since the p-primary
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components of (R, +) are ideals of F, the group primary decomposition of F

yields a ring decomposition of F.  F is indecomposable so that F must have just

one p-primary component and hence has unmixed characteristic.  Hence we may

assume that (F, +) is not a torsion group.

Let {el ,..., en} be a complete set of primitive idempotents for F. Con-

sider a simple right module 5; S is isomorphic to eft/e^ for some i  S is a left

vector space over the division ring e^eje^e^ and hence the characteristic of S

is the same as that of e^eje^e^ The ring e¡Re¡ is a local semiprimary ring

whose only simple module is eiRei/eiNei and hence e¡Re¡ has unmixed character-

istic as does every module over e¡Re¡.

Let e be the sum of those e('s for which etR/e¡N has characteristic zero and

let / = 1 — e be the sum of the remainder.  The ring eRe is a semiprimary ring

over which every simple module has characteristic zero; hence every module over

eRe is torsionfree as an abelian group. The ring fRf, however, is a semiprimary

ring over which every simple module has prime characteristic; hence every module

over fRf is torsion as an abelian group.  This forces the bimodules fRe and eRf

to be 0.  Thus F is the ring direct sum of eRe and fRf, and since R is an indecom-

posable ring for which (F, +) is not torsion, it must be that R = eRe is torsion-

free and F has unmixed characteristic.   D

Corollary 1.2. A nonsingular indecomposable semiprimary ring has uni-

form characteristic.

Proof. If F has characteristic zero, then the result follows from Proposi-

tion 1.1.  If not, then by Proposition 1.1, F must have characteristic pk.  Let Q

be the maximal quotient ring of F; Q is semiprime.  If k =£ 1, then the ideal

(p\)Q is nilpotent of index k sincepl is an element of the center of Q. This is a

contradiction since Q is semiprime;  thus char R = p and F has uniform char-

acteristic.   D

It is also true that an indecomposable PWD (see §2) has uniform  charac-

teristic, the proof being very similar to that of Proposition 1.1.

We will need the following result due to P. M. Cohn [10].

Theorem 1.3. Two division rings K, L can be imbedded in a common di-

vision ring if and only if they have the same characteristic.    D

2.  Hereditary semiprimary rings.  The purpose of this section is to prove

Theorem 2.1 which describes the structure of a hereditary semiprimary ring F in

terms of M x M "triangular" row-finite matrices over a division ring D. There

have been several results in the past (Chase [8], Harada [19], Gordon [15]) con-

cerning triangular representation of a hereditary ring. Theorem 2.1 differs from
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these mainly in that it gives an explicit representation in terms of matrices over a

division ring. The results of this section will be used in §3, which is concerned

with semihereditary and hereditary rings.  Some of the results are broader than

needed, but they will be of use in a subsequent paper on splitting rings.

Theorem 2.1. Let R be a basic indecomposable hereditary semiprimary

ring.   Then:  (i)  There is a division ring D.   (ii)  There are ordinal numbers I\ >

l2 > * * * > /„   Qet M = ly + ' • ' + ln).   (iii) For each i = 1,..., n there

is a division subring D¡ of the ring of l¡ x I. row-finite matrices over D. (iv) For

each i there is a sequence of integers i < z'(l) < i(2) < • • • < i(k) < n and a

sequence of ordinal numbers vil), vil),..., u(fc) for which 2*=1 /j(a)i>(a) =

/,. ; such that R is isomorphic to the following blocked lower triangular subring

of the ring Q of M x M row-finite matrices over D:

(1)

z>A:

N¿        \DÍ

'.N,-

\d,

where each N¡ is defined recursively in terms of 'N- for j > i by

(2) N.- ci C\ cÚ(i)¡' er 'v(k)

and where Cß is the collection of all matrices of the following form

& C$=<[0\Di(a)\Ni(a)\

where the zero denotes the appropriate sized zero matrix, and ' denotes transpose.

Conversely, any such matrix ring is a basic hereditary semiprimary ring and

Q contains a copy of the maximal left quotient ring of R.

The ring R will be left Artinian exactly when the ordinal numbers v(a) are

integers for each i.  D

As a simple example of the theorem let R be the ring of matrices of the

form
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a 0 0

0 a 0

b   b + c   d

where a, b, c, and d are real numbers.  Then F is an indecomposable hereditary

semiprimary ring and F is isomorphic to the ring S of matrices of the form

'a    0   0"

0   a    0

bed

The theorem states that there always is such an isomorphism.

The theorem is stated for an indecomposable ring since a semiprimary ring

is a direct product of finitely many indecomposable semiprimary rings, and since

a finite product of rings is hereditary if and only if each factor ring is hereditary.

The theorem also assumes that F is basic; in view of the results stated in § 1

concerning basic rings and Morita equivalence this gives no loss of generality. While

the assumption that F is basic does not alter any ideas in the proof of Theorem

2.1, it does help to simplify notation.

The remainder of this section is concerned with the proof of Theorem 2.1.

The proof will consist of imbedding F in a full M xM row-finite matrix ring Q

over a division ring D so that Q is flat as a right F-module; using the flatness of

QR and the projectivity of left ideals of F to draw conclusions concerning the

matrices which represent F; and finally viewing Q as the ring of linear transforma-

tions of Af-dimensional row space over D so that a change of basis can be used to

obtain the desired representation forF.

Proposition 2.2. Let R be a semiprimary left nonsingular indecomposable

ring.   Then there is a cardinal number M and a division ring D such that R can be

imbedded in the ring QofMxM row-finite matrices over D such that RQ is non-

singular.  If R is left hereditary, then this can be done so that RQ is R-injective

and QR is R-flat.

Proof. Since F is left nonsingular and semiprimary by Johnson [22] the

maximal left quotient ring T of F is a ring direct sum Tx x • • • x Tk where

each T¡ can be identified with the c¡ x c¡ row-finite matrices over a division ring

K¡.  Let M be the sum of the cardinal numbers c1,...,C¡e.  Since F is indecom-

posable, R has uniform characteristic by Corollary 1.2; hence, the division rings

Fj,..., Kk have the same characteristic.  Hence by Theorem 1.3 there is a divi-
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sion ring!) containing Fj,..., Kk. Each T¡ is then a subring of the ring of c¡ x c¡

row-finite matrices over D. T and F are then imbedded in Q by the map which im-

beds the sum of the c¡ x c¡ matrix rings in Q as a diagonal block matrix ring.

If/ is an essential left ideal of F and if q E Q for which Iq = 0, then Tlq =

0. The left F-module RR is an essential submodule of R T since T = E(RR);

therefore, RI is essential in RT, and finally TI is thus an essential left ideal of T.

As a result we have that RQ is F-nonsingular if TQ is F-nonsingular.  Let / be an

essential left ideal of T and let q G Q for which Iq = 0.  Let Ehh be the M x M

matrix with a 1 in the ft, A position and zeroes elsewhere (for A G M). The left

ideal TEhn is a minimal left ideal of T; hence TEnh is contained in the essential

left ideal / and Ehh E I. It follows that Ehhq = 0 for all ft G M, and thus that

q = 0; that is, TQ is nonsingular.

F is hereditary semiprimary; therefore, by Cateforis [5, p. 246] TR is flat.

Since RR is nonsingular, T is a regular ring; hence it follows from [4, p. 123,

Problem 10] that QR must be flat.  Since qQ is ß-injective and since QR is R-

flat, we have that RQ is F-injective, also by [4, p. 123, Problem 10].    D

A ring F is called a PWD (see Gordon and Small [18]) if there is a complete

set of orthogonal idempotents {e,,..., en] with the property that xy = 0 for

x G e¡Rek and y G e^Fe.- implies x = 0 or y = 0.  All PWD's are nonsingular

[17], and the class of PWD's properly includes the class of hereditary semiprimary

rings.

Let F be a basic semiprimary PWD with respect to the complete set of or-

thogonal idempotents {e,,..., en}. As in [18] we can order the idempotents

{t?j,..., en) in a manner so that efiej = HomÄ(Fe/( Fey) = 0 if i </.  Since

N is nilpotent, it also follows that e¡Ne¡ = HomÄ (Re¡, Ne¡) = 0 and hence e¡Re¡

is a division ring D¡.

Let F be a set and D a division ring. A F-rspace (F-cspace) over D is the

vector space over D consisting of those F-rowtuples (columntuples) which are zero

for all but finitely many k in K.

By Proposition 2.2 F can be identified with a subring of the ring Q of

MxM row-finite matrices over a division ring D, and the ey's will be a set of or-

thogonal idempotents of Q. The ring Q is the ring of linear transformations of

M-rspace over D; the set of idempotents {ev ..., en) will then give a direct sum

decomposition of M-rspace so that e¡ will be the natural projection on the z'th

subspace. Choose a basis for the z'th subspace indexed by a set A¡, this can be

done so that A t U • • • U An = M. Partially order M so that if x E A¡ and y E

A- then x <y if i < j.  Represent each of the linear transformations with respect

to the basis consisting of the union of the bases of the subspaces; e¡ will then be

a matrix with an A¡ x A¡ identity block along the diagonal and zeroes elsewhere.

In fact F will then consist of a collection of matrices having the following form:
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(*)

Since R is basic, each e¡Re¡ can be identified (as in the diagram (*)) with

a division subring of the ring of A¡ x A¡ row-finite matrices over £>; as before de-

note it by D¡. Also, each e¡Rej can be naturally identified with a left D¡ (and

right D) subspace of the space of A¡ x A.- row-finite matrices over D. Through-

out this section the elements of e¡Rej will be viewed both as M x M and A¡ x A.,

matrices.

We will need the following lemma which appears in Cartan-Eilenberg [4,

p. 122, Problem 5].

Lemma 2.3. Let R be a ring and let A be a right R-module. If I is a left

ideal ofR, then A 2>RI —* A ®RR is a monomorphism if and only if whenever

2 a,«,- = 0 for {a¡} C A and {p¡} G I, there exist {b¡} C A and {X(/} C R such

that 2;- bjky = at for all i and 2f \ij[ii = 0 for all j.   D

Let Ehk be the M x M matrix with a 1 in the h, k position and zeroes else-

where.  It follows that Q = ^„sM^hhQ- Intuitively EnhQ *s the Ath row of Q,

while QEhh is the Ath column.

The next three lemmas will be technical lemmas concerned with the flat-

ness of QR.

Let / and / be sets. An / x / row-finite matrix will be called faithful if it

is a monomorphism when considered as a linear transformation from 7-rspace to

/-rspace.

Lemma 2.4. Let R be a PWD with structure as in (*). // QR is R-flat,

then:  (1) ifx is a nonzero element ofe¡Re; then x is faithful; (2) if e¡Rej =£

0 and i < i, then \A¡\ < \A¡\; (3) the e¡s can be reordered in a manner consis-

tent with the structure in (*) so that \A¡\ > \A¡\ whenever j < i.

Proof. (1) Suppose that x is a nonzero element of e¡Re- and suppose that

qx = 0 for 0 + q G ̂ 4f-rspace.  Identify q with that element of EaaQ for which

qe¡ = q where a G A¡. Since EaaQ is flat, it follows from Lemma 2.3 that there

e.Re,

'1*1

eficj : e.Re, :

: N't :

«■*..
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are elements {ba} C EaaQ and { Xa} C R for which 2 baXa ■ «7 and Xax = 0

for all a. Since q = qe¡ ^ 0, for at least one a, say a0, Xa e¡ =£ 0. Since Re¡ is

indecomposable and since R is a PWD, we have that every element of

HomRiRe¡, Rej) is a monomorphism. Right multiplication by x is such a homo-

morphism; therefore (Xa e¡)x ¥= 0. But this is a contradiction since (Xa e¡)x =

Xa (e^) = X   x = 0.  Hence there can be no such q and x is faithful.

(2) Let x be a nonzero element of e¡Re,. Consider x as a linear transforma-

tion from .dj.-rspace to /l;-rspace. By (1) dim range x = M,-! which then must be

less than \A-1.

(3) Suppose that the e^s are not ordered in the desired manner; then there

is an 1 for which \A¡ \ < \A-1 for some / > i.   Let i be the first such i and let /

be the first such /.  Let 1 < k < /, then \A, \ > \A¡ \ > \Ak I ; hence by (1)

UomR iRep Rek) = 0. As a result the ordering { ex,..., e¡_ y, e¡, e¡,..., e,_ y,

ej+ y,..., e„}will retain the property that ekRenl = 0 whenever m> k. This

reordering of the e,'s will retain the structure (*).  Continuing this process will

give the desired ordering.    D

For the rest of this section assume that the e¡% are ordered as in Lemma 2.4

(3).

Lemma 2.5. Let R be semiprimary. A right R-module AR is flat if and

only ifO —>A ®RNe¡ —■*• A ®RRe¿ is exact for all i.

Proof. The ring R is semiprimary so that by Proposition 7 of Auslander

[2], AR will be flat if and only if Toif iAR, SR) = 0 for all simple right R-

modules SR. The set {Rey/Ney,..., RejNen} is a complete set of representa-

tives for the isomorphism classes of simple right modules over R; therefore, by

a long exact sequence of Tor we have that AR is flat if and only if 0 —► A ®

Ne¡ —*■ A ® Re i is exact for all /.    D

Let { Va = a G A} be a family of vector spaces over a division ring D and

let Ta G Hom(Fa, V) for some vector space V over D. The family { Ta} will be

called codirect if their images sum directly as subspaces of V. The family {Ta}

will be called full if the sum of their images is all of V. A family of matrices

will be called codirect (full) if the family of linear transformations they represent

is codirect (full). A family of matrices will be called faithful if each matrix in

the family is faithful.

The following lemma will give a criterion for the codirectness of a family of

matrices.

Lemma 2.6.    Let A be a well-ordered set and let {xa: a G A] be a faithful

family ofAa x M row-finite matrices where the Aa's and M are sets.   The family

{xa} will be codirect if and only if the matrix C
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C   =

is a faithful linear transformation from @a<EA(Aa-rspace) to M-rspace.

Proof. The {xa} are codirect if and only if 2 qaxa = 0 for qa EAa-

rspace implies each qaxa = 0. Since each xa is faithful, this happens exactly

when each qa is zero.   D

The following proposition will constitute the main part of the proof of

Theorem 2.1.

Proposition 2.7. Let R be a semiprimary ring with matrix structure as in

(*). The ring R will be hereditary with QR flat if and only if for each i, Nei has

a faithful codirect family of generators.

Proof. Since F is semiprimary and Hom(Fe;-, Ne¡) = 0 for; < i, it follows

that for each i there is a sequence of positive integers i < z'(l) < i(2) < • • • <

i(k) < m and a set Aa for a = 1,.. ,* such thatNe¡¡N2ei at ©{(Fe/-(a)^VeJ.(a))/4a:

a = 1.Jt} where (Fe^^/Wë,/^) a denotes the direct sum of copies of

^■ei(a)l^ei(a) indexed by the set Aa. It follows then that Ne¡ has a set of gen-

erators {u%} where u% E e/(a)Fe,. and Ru%/Nu% ̂ /?e;(a)/A^e|.(a)for a = 1,..., k

and ßEAa.

(=*) Let F be hereditary and let QR be flat. Consider Ne¡ and {«^} chosen

as above. The projective cover o{NejN2ei is isomorphic to P - ®(Rei^a-))A°'.

Since F is hereditary, Nei is also a projective cover of NejN2ei and it follows

easily from a natural isomorphism of P onto 2 Ru^ that the Fw^'s sum directly.

To show {u'ß} is codirect, suppose that there are q^s in ,4a-rspace for which

2aj3 qßUß = 0.  Identify each q'ß in the natural manner with that element of

EmmQ for which q^e.^ = q* for some fixed m in M.  The module QR is flat,

hence so is EmmQ; therefore by Lemma 2.3 there exist bys in EmmQ and

{X£7} C F such that 27 by\%y = q"0 for each ß and a, and 2a|3 l^tf = 0

for all y. Since the Fw^'s sum directly, X^uj, = 0 for all a, ß, y. Since ei(a)u<B

= uaß, we have that (Xg7<?/(a))ug = tfy(ei(a)i$) = \aßyuaß = 0. Each a« is faith-

ful by Lemma 2.4;  this implies XßyelM = 0 for all a, ß, y. Therefore

Iß = 4ßen«) = ( Z V/J? )ci(«> = £ MÍW) = °-
\ 7 / 7
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Thus all the i^'s are zero, and the family {u^} must be codirect.

(<=)  By Proposition 7 of Auslander [2] and by Lemma 2.5 it will be

enough to show that for each i, Ne¡ is projective and 0 —* Q ® Ne¡ -* Q ®Re¡ is

exact.

Consider Nei and let {«$} as above, be a faithful codirect family.  The

family is faithful so each u^ is faithful and Rup* = iRe¡^u^ m Re¡^ is projec-

tive. Then Ne¡ will be projective provided it can be shown that the Ruß 's sum

directly.  Let 0 = 2^ /-¡*M° for {/•£} C R. This will be the case if and only if

EmmiZ r^uaß) = 0 for all m G M; but

Emm (Z «) = Z Emmr>ï = Z ^«tf«««)«? = 0
a,ß

since e¡^u^ = uß. For each a and j3,Emmrße.,a^ can be identified with an ele-

ment of /la-rspace; hence Emmrcßei^ = 0 since {uß} is codirect. Thus we have

0 = rjjfya) and r^e^^üß = r^ujj = 0 for all a and ß; hence the Ruß 's sum di-

rectly and Ne¡ is projective. This shows that R is left (and right) hereditary.

Since R is hereditary and since QR = IlmeM£'mmöij, ßfi will be flat if

and only if EmmQR is flat for all m by Theorem 2.1 of Chase [7].  The Rufi's

sum directly; therefore, every element of EmmQ ®Ne¡ can be written uniquely

in the form 2a>(; Emmq% ® i$. Suppose that 2a>|3 qffi = 0 where c§ G

EmmQ-> then 0 = 2atßqfä = 2 íg«/(a)«g since e/(a)U« = «J. Each ̂ e/(a)

however can be naturally identified with an element of an /4a-rspace; in which case

^u<ß = qßei(a)u<ß = ° for each a and ß since i"ß^ is codirect. Since each u$ is

faithful, we further have that qaßei(a) = 0 for each a and ß. Let ftp? = q^ and

let X^ = 1 — e,-(a). Then we have

also,

Therefore

b°ß\aß = qfil - ei(a)) = q« - q<*ße{(ci) = q«ß - 0 = ^;

X£Mpi = (1 - e/(a))«« . «J - emül = uaß-uaß = 0.

Z flp ® «? = Z W ® «? = Z *? ® *?«? - Z *? ® o = o
a,ß a,ß

and hence 0-*EmmQ ® Ne¡-+EmmQ ®Re¡ is exact. Thus EmmQR is flat

and hence QR is flat.   D

We can now give the proof to Theorem 2.1.

Proof. Let R be an indecomposable hereditary basic semiprimary ring. By

Proposition 2.2 we can imbed R with triangular structure (*) in the ring Q of

Mx M row-finite matrices over a division ring D. Choose for each / a codirect

family of generators for Ne¡ as in Proposition 2.7.  Let V be M-space over D; we
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will view Q as the ring of linear transformations of V, and then choose a basis for

V which will give each Uß a representation which will then give F the representa-

tion of Theorem 2.1.

The orthogonal set of idempotents {elt...,en} gives a direct sum decom-

position of V; V = Vex © • • • ® Ven. We will inductively choose a basis for

each Ve¡.

Choose any basis for Ven. Well-order this basis and let its order type be

that of an ordinal /„.

Inductively assume that a basis of order type /;. has been chosen for all

/ > i. Using the notation of Proposition 2.7, well-order each Aa and let the order

type of Aa be v(a)- The set {u^} will then be well ordered under the lexico-

graphic order.  By Proposition 2.6 the matrix

c = Vi :•••:<*)]

will represent a faithful linear transformation from U= (Ba,ß ^e\(a) 'nt0 ^ei

where i < i(l) < • • • < i(k) < n and where Ve\^ denotes a copy of Ve,^ay Let

Bß be the copy in Ve\^ of the basis chosen for Ve,^a) ; B = \Ja^ will then be a

basis for U, and if F is ordered lexicographically it will have order type 2 l,,a*.v(a).

Since C is faithful, (B)C will be a linearly independent subset of Ve,; extend it to an

ordered basis in a manner which extends the ordering of (F)C induced by that of 5.

Denote the resulting order type by l¡. Continuing this process will give an ordered ba-

sis for V; as a result we can consider M to be the ordinal 2?_ t L,

We will now show that F will have the desired representation with respect

to this basis.  The structure of (1) follows from the fact that F has a structure

as in (*).  Consider Ne¡ and inductively assume that Ne- has structure in (2) and

(3) for all / > 1.  Let L = 2 /,(a)i>(a). With respect to this basis C will have the

form [ / • 0 ] where / is an L x L identity matrix.  In this case u'ß (considered

as an l,(a) x I, matrix) will have the form [ W'\I \Z ] where W is an //(a) x

(27<a li(y)v(y) + li(a)(ß - 1)) zero matrix, / is an li(a) x 1¡(¡J¡) identity

matrix, and Z is the zero matrix consisting of the remaining columns.   It is

now easy to see that F has the desired representation.  Let Cj¡ = Feva)i/2; «»

is an /f(a) x l.^ identity matrix so that C¡¡ consists precisely of all matrices

overFe,.^. Hence Cjf has the structure indicated in (3).   By the above

representation of u? we see that u? 's form a sequence of nonoverlapping sub-

identity matrices from left to right; therefore, the Cß 's are positioned as in (2).

We have

Ne, = ®Ruaß=® Rei(a)uaß = © Caß
a,ß       H      ct.ß       'w   p       a,ß    P

so that the C¿"s will represent everything in Ne¡.   Suppose now that

2a=] /,(a)u(a) ^ l¡;   then the right-hand column of Ne, will be identically zero.
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Suppose that this is the mth column. We will then have

(Socfi/0£-mmO = i(SocRR)Emm)Q C (Nei)EmmQ = 0

since e^mm = 0 for / i= i; but this contradicts that RQ is nonsingular as in Prop-

osition 2.2. We have thus shown that each Ne¡ has the desired structure.

Conversely, assume R is a ring with structure as in (1), (2) and (3).  For each i

pick a family {uß} where uß is the l¡^ x l.^ subidentity matrix of Cß for

which e;(a)Hß = uß (e/(a) is the identity element of Z>,(a)).   By choice {u^} will

be a faithful codirect family of generators for Ne¡. Hence, by Proposition 2.7, R

will be hereditary and QR will be flat.  It is easy to see that N is nilpotent of

index at most n, so that R is semiprimary.

We show that the maximal left quotient ring T of R is a subring of Q. If q G

Q for which Soc(i?e„)<7 = (Ren)q = 0, then clearly enq = 0.  Suppose that q G

Q for which Soc iRe¡)q = 0.  Inductively assume that if for / > z, Soc iRej)p = 0

for pGQ, then ep = 0. We have that

Socfto,.) = 0Soc(Cg) = 0 [Soc(/te/(a))] «jj;
a,ß a,ß

whence [Soc iRe¡,a-))] ußq = 0 for all a, ß and thus by the induction hypothesis

ei(a)ußcl ~ UßQ ~ 0-  It follows that Emmq = 0 whenever ußEmm ¥= 0.  Suppose

that eiEmm =£ 0; then ußEmm ¥= 0 for some a, ß since 2 /l(a)u(a) = /,-; as a re-

sult we have Emmq = 0 whenever e¡Emm ¥= 0 and e¡q = 0.  Now suppose that

Soc iRR)q = 0 for q G Q; then Soc iRe¡)q = 0 for each i, and e¡q = 0 for each

/.  It follows that q = 0 since ex + • • • + en » 1. We have shown ZiRQ) =

AnnQiSociRR)) = 0 and RQ is nonsingular.  Since qQ is injective and QR flat,

it follows from Cartan-Eilenberg [4, p. 123, Exercise 10] that RQ is injective.

Using the fact that RQ is a nonsingular injective module, we have that T is a sub-

ring of Q. In fact, T is exactly the subring of Q which leaves SociRR) invariant

under right multiplication.

It is clear from the proof that R will be left Artinian if and only if the u(a)'s

are integers.   D

If R is any matrix ring of the form described in Theorem 2.1, then it follows

immediately that each Ne¡ is isomorphic to a direct sum of indecomposable left

ideals of R and that R is semiprimary.  It is then easy to see that R is heredi-

tary.  However the theorem gives additional information concerning Q and R;

namely that QR is R-ñat and that Q contains a copy of the maximal left quotient

ring of R.

Remark 2.8. Theorem 2.1 can be restated somewhat. Let Q be the ring of

MxMmatrices overD. ThenR is a semiprimary hereditary basic subring of Q with

QR flat if and only iiR is conjugate to a subring of Q having structure (1), (2) and

(3).  Furthermore, R's maximal left quotient ring is contained as an overring of

R in Q if and only if 2 l¡^v(a) = l¡ for each i.
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The complicated use of flatness in Theorem 2.1 cannot be avoided entirely

as is seen by considering the ring R of all matrices of the form [ab  ¡?] where a

and c are rational numbers while b is a complex number. F is a hereditary semi-

primary subring of the ring of 2 by 2 matrices over the complex numbers, C2.

But F cannot be put in the form of Theorem 2.1 as a subring of C2 since R is

not finite dimensional. This also shows that (C2)R is not F-flat.

It should be noted that the proof of Theorem 2.1 can be expanded to give

an explicit structure for the maximal left quotient ring T of F as an overring of

F in Q. This also gives the indecomposable nonsingular injective modules over F.

Since every indecomposable injective module over a semiprimary hereditary ring

is a direct summand of a quotient of an indecomposable nonsingular injective

module, this gives an explicit structure for indecomposable injectives over F.  Let

us give an outline of that expansion.

Since Tis the unique injective hull of RR contained in RQ, Twill also be

the unique injective hull of Soc (RR) contained in Q; hence we shall first compute

E(Re¡) where Fe- is simple.  By Gordon [16, Theorem 1.2], the Fe-homogeneous

component of Soc(fiF) is e;F; hence ejR = ©7r=c.Fx7 where Rxy ^Fe;.

Using Theorem 2.1 we can take Rxy to be the collection of all matrices of the

following form:

By = A'

where A'y is the collection of all matrices over Dj = eRe,; furthermore x   can be

taken as the lf x I. identity matrix. The matrices [B': y E CJwill have nonover-

lapping columns for different 7's.  Let D'y be the collection of all matrices of the

following form:

D>y = A'Ay

}p-7
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Each element of Dy is almost the transpose of an element of By.

Let E' = nyec.D!y. Since the columns of the B'ys are nonoverlapping,

the rows of the Dy 's are nonoverlapping; hence E' can be identified with the

obvious subset of Q.

Claim.  E> = E(Re¡).

Let y be a nonzero element of E', then the y component ofj' is nonzero

for some y. In this case xyy will be a nonzero element of Fe;.. Hence E' is es-

sential over RCj and is thus contained in the unique injective hull E(Rej) con-

tained in Q.

Conversely, RQe, is an injective submodule of RQ which contains Fe;.;

therefore, E(Rej) C Qe¡.  Let y E E(Rej), then right multiplication by y is an F-

homomorphism; therefore xyy G Soc(E(Re-)) for each y. As a result, we have

that the Ay position of y must be an element of /)-. Now suppose that.y has a

nonzero row j3 which is not covered by one of the A}y%. Since RQ is nonsingular,

there is an element z of Soc (RR) for which Rz is simple and for which zEßß + 0.

Since the 0-row is not covered by an A'y, Rz is not isomorphic to Fey.  As a re-

sult we have that Rzy is a nonzero simple submodule of E(Rej) which is not iso-

morphic to Fe . This is a contradiction, and it must be that y G É and E1 = E(ReJ).

Let E>y be the collection of matrices of the following form:

F> =£7 F'

It follows that E'y = E(Rxy). We then have E(e¡R) = Qn (Uy(ECEy) which is

isomorphic (canonically) to the ring of row-finite matrices over the division ring

Dj, as it should be.  Doing this for each / for which Fe;- is simple, and taking the

direct sum yields T.

Example. Let F be the ring of matrices of the form

a

0 a

0 0a

b 0   0   d

0 b   0    0   d

0 0   c   0   0   e
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where a G Q, b, d G R, and c, e G C.  By Theorem 2.1 we have that R is heredi-

tary semiprimary.  By the previous discussion T is the ring of matrices of the form

Xj    0 0     x2    0     0

0      Xy     0       0      x2     0

0     0     yy    0     0     y2

0     0x3    0     0

0     x3    0     0

0     0 y¡

x4    0

0    yA

where x¡ G R, yf G C.    D

By Theorem 2.1 it would seem that a two-sided hereditary Artinian ring

would be very similar to the ring of lower triangular matrices over a division

ring and should share many properties with such a ring.  The following example

shows that one property not shared is the finiteness of indecomposable injective

modules.

Example. P. M. Cohn [11] has shown that there are division rings Dy C

D2 for which [D2: Dy]r = 2 and [D2: Dy], = «>.  Let

[a* d4

The ring R is a left and right Artinian hereditary ring by Theorem 2.1; but

E = E 0   °"|\r°   D2~\
0   D2\)     [_0   D2\

is not finitely generated as a left R-module.    D

In the proof of Theorem 2.1 the structure of Ne¡ was completely deter-

mined by the isomorphism type of the semisimple module Ne/N2e¡ (which is

given numerically by the u(a)'s). As a result it would be reasonable to conjecture

that the diagonal division rings D¡ together with the isomorphism type of each

Ne-/N2e¡ would give a complete set of invariants for basic semiprimary hereditary

rings. This is not the case as the following example shows.

Example. Let

R

a + ib       0

0       a + ib

c d

and   S = (

* a     b    0

-b    a     0

c    d    e

for a, b G R; c, d, e G C.   Each of these rings is a basic hereditary Artinian ring
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having isomorphic diagonal division rings and the same Ne,/N2e, structure, but

they are not isomorphic (every minimal right ideal of N(R) is a two-sided ideal,

while this is not the case for N(S)).   O

3.  Semihereditary and hereditary rings.  In this section we first apply the

results of Gordon and Small [18] and Gordon [17] to obtain a structure theorem

(Theorem 3.7) for semihereditary rings which are left orders in a semiprimary ring.

Our results are motivated by Small's example [29] F = [^  |] of a semihereditary

ring which is an order in an Artinian ring.  In fact, we show that any semiheredi-

tary ring which is a left order in a semiprimary ring is of the same general form.

Then we apply the results of §2 along with our structure theorem for semi-

hereditary rings which are left orders in a semiprimary ring to obtain a structure

theorem for hereditary rings which are left orders in a semiprimary ring.  These

results differ from those of Small [30], Gordon and Small [18] and Gordon [15]

in that the representation is explicit in terms of matrices over left hereditary left

Goldie prime rings and their respective classical left quotient rings.

When a semihereditary ring is a two-sided order in a semiprimary ring, our

results take on a particularly simplified form.  In particular, we obtain Chatters'

result [9] that a two-sided hereditary Noetherian ring is a direct sum of an Ar-

tinian ring and a semiprime ring. When the maximal quotient ring is two-sided,

we recover a result of Goodearl's [13, pp. 38—44].

Before proceeding, we need some terminology.  An F-module M is said to

be torsionfree [25] if for any x EM, the annihilator of x does not contain a

regular element of F.  A ring F with prime radical N is said to satisfy the regu-

larity condition if a + N is regular in R/N implies a is regular in F.  A ring is

said to have enough idempotents [18] if it has a complete set of orthogonal

primitive idempotents.  Finally, F is said to satisfy the left (right) essentiality

condition [17] if Ra (aR) is essential in F for every regular element a of F.

Gordon [17] gives the following characterization of a left semihereditary

ring possessing a semiprimary classical left quotient ring.

Theorem 3.1. A left semihereditary ring R possesses a semiprimary classi-

cal left quotient ring if and only ifR has enough idempotents and R satisfies the

left essentiality condition.   D

By Small [32], any left semihereditary ring possessing a semiprimary classi-

cal left quotient ring is right semihereditary.  Also note that a ring F is a left or-

der in a semiprimary ring Q if and only if Q is the classical left quotient ring of

F. These facts will be used repeatedly in this section.

Let F be a semihereditary ring possessing a semiprimary classical left quo-

tient ring.  Then F is a PWD and has a representation:
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(0 R^

Pi

P21    ^2

^31     P.

ni

P3

«2 /i3

where each P¡ is a prime ring and each P» is a P¡ — P¡ bimodule. We will let ek

be the matrix unit which has the identity of Pk in the ik, k)th block and zeroes

elsewhere. Note that P¡ = ejRei is semihereditary by [27] and P¡j = e¡Rej.

Since R has a semiprimary classical left quotient ring Q, R/N is a left order

in the semisimple ring Q/NiQ).

Lemma 3.2. If R is indecomposable, then Q is indecomposable.

Proof. To show that Q is indecomposable, we need to show that Q has

no proper central idempotents.  The ring Q is semiprimary and NiQ) = /(Ô), so

that any orthogonal lifting of a complete set of orthogonal idempotents for

Q/NiQ) will be a complete set for Q.  By Gordon [17, Proposition 1], R/NiR)

is a direct sum of uniform left ideals; hence a complete set of orthogonal idem-

potents for Q/NiQ) may be chosen in R/NiR). The ideal NiR) is a nilpotent

ideal of R, so that any such set can be lifted to R. Therefore any central idem-

potent of Q belongs to R, and Q is indecomposable since R is.   D

The ring Q is thus an indecomposable hereditary semiprimary ring, and its

structure will be given in detail by Theorem 2.1 and the discussion of basic

rings in §1.   In general, however, Q will have the following structure:

(2) Q*

*i

K2l    K2

KZ\     ^32  ^3

Kni    Kn2   Kn3 K„

Since in the proof of Lemma 3.2 it was shown that a complete set of orthog-

onal idempotents for Q could be chosen in R, we can assume that K¡- =
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eiQej 2. eftej = ?»•   Furthermore, each P, will be a left order in the simple

Artinian ring K,.

Lemma 3.3.  Each P,j is a torsionfree left P,-module and a torsionfree

right Pj-module.

Proof. P,= is a right F-sub module of the Fy-module K¡¡.   Since any F-

module is torsionfree as a F-module, and since submodules of torsionfree

modules are torsionfree, we have that P,, is a torsionfree right F-module.   Simi-

larly P,j is a torsionfree left F-module.     D

Lemma 3.4. Each P,- is a right Kj-module.

Proof.   Let e = e, + e-.  The ring eRe is naturally isomorphic to

L'i 4
By  [27], eRe is semihereditary.   Furthermore eRe is a left order in eQe

[14], so eRe has the left essentiality condition.   Hence we may assume that

F = [M   T]   and show that M is an S-divisible right S-module.   Let d be a

regular element of 5 and suppose that Md =£ M.   Let m EM — Md and con-

sider the left ideal

\d °i _ r sd   °i
[m   0 J     \_Md + Tm    0J '

It is not projective, however, as we will show that the natural map 17 of F

onto it does not split.   Let K = ker 1?;   it is easy to see that

Ms is torsionfree by Lemma 3.2.   Therefore if

are in F, xxd = x2d oxxx = x2. Then F is naturally isomorphic to a left ideal

of T under the map which sends [x  °] to [q  "] • Call the image of this map K'.

Since F satisfies the left essentiality condition, [¡¡¡d  °] is essential in

[^  q] and Md is essential in M as a left F-module.  Consequently K' = {t E T:

tm EMd} = (m: Md) is an essential left ideal of T.   Note that 1 £ (m: Md)

since m $Md.

The natural map rj cannot be a splitting map since F is not generated by an
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idempotent; for if K is generated by an idempotent, then K' must be generated

by an idempotent.  But K', being essential in T, can be generated by an idempo-

tent if and only if the idempotent is the identity of T, an impossibility since 1 G

K'. Hence M is 5-divisible and P¡¡ is /^-divisible.

Now since P(, is a divisible torsionfree P;-submodule of the /f-module K¡¡,

P(: must be Ay-invariant and hence a right ^-module.    D

The following lemma gives more information concerning the relationship be-

tween R and Q.

Lemma 3.5. Kij = KiPij.

Proof. Since K(j = e¡Qe-, K¡ = ef £?<;,, and P« = e¡Rej, this is a result of

Small as generalized by Gordon [14, Theorem A].   D

We will also need the following technical lemma.

Lemma 3.6. Let P be a prime left Goldie ring with simple Artinian clas-

sical left quotient ring K such that P =£ K.   Then: (i) Kp is not finitely generated;

(ii) ifP is left Noetherian, then pK is not finitely generated; (iii) if P is left

hereditary, then PK is not projective.

Proof, (i)  Suppose that Kp is finitely generated with generating set

{Xj,..., xfc} . A common left denominator d can be chosen so that x¡ = d~ ia¡

where each a¡ G P and d is a regular element of P. Then it follows that dK G P,

and in particular, d~l = dd~2 G P.  This is a contradiction since P =£ K.

(ii)  Let ¿f be a regular element in P for which d~l G P.  If pK is finitely

generated, then PK will be Noetherian since P is left Noetherian.  Hence there is

a positive integer m for which Pd~m = Pd~^m + 1\ Then there exists an x G P

for which xd~m = d~^m +1^; we then have d~l = x an element of P, which

is a contradiction.

(iii)  Since PP has finite Goldie dimension, it follows from Albrecht [1]

that P is left Noetherian.  If PK is projective, then PK will be finitely generated

by Albrecht [1] since it also must have finite Goldie dimension.  This contra-

dicts (ii).    D

If {ey, e2,..., en] is an ordered set of orthogonal idempotents for a ring

R, for notational purposes we will let ft =» e¡ + • • • + «„,

We are now in a position to state the main theorem on semihereditary rings.

If R has a semiprimary classical quotient ring, then R will be a direct sum of in-

decomposable rings.  Hence it is sufficient in the following theorem to assume

that R is indecomposable.

Theorem 3.7. Let R be an indecomposable semihereditary ring with semi-

primary classical left quotient ring Q; let R and Q have general form as in (1)

and (2).  Then each P¡ is a semihereditary left Goldie prime ring, each Ptj is a
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right Kj-module, and for each i, ffte,_, is a flat left f,Rf,-module.

Conversely, any such ring is semihereditary.

Proof. By Gordon and Small [18] eachPf is a semihereditary prime left

Goldie ring, while Lemma 3.4 shows that F(/. is a right F-module. It remains to

be shown that ffie,_ j is a flat left f,Rf,-module for i = 2,..., n.

The ring f¡_ j Rf¡_ x is again semihereditary by [27], so it is sufficient to

assume that F is of the form F = [f¡ ° ], and then show that jM is flat. But

RM = jM; therefore since RM is flat, jM is also flat.

To prove the converse we need only show that F is semihereditary.  To do

this we induct on n, the number of orthogonal central idempotents of Q/N(Q).

If « = 1, the result is trivial.  Now assume the result holds for n = r — 1 and let

W =

P21     Pi

rl n

satisfy the conditions of the theorem.

Let

U =

F,

21

r\ r\

A     0

B    C

be partitioned as indicated.  By the assumptions of the theorem, CB is flat; hence

by Fields [12, p. 348] and the induction hypothesis we have that WGD(C/) < 1.

Since Q is semiprimary, it follows from Jondrup [23, Corollary 3.2] that finitely

generated flat 17-modules are projective; whence U is semihereditary.

Now let
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^r-1,1   ' ' '    Pr-\

KrPr, 1 KrPr,r- K.

■C:]

be partitioned as indicated.  Let

*i

K2P2 y     K2 0

KA,1      KrPr,2 K,

and    Y =

Kr-\Pr- 1,1 ' Kr

Now Y is the classical left quotient ring of D so YD is flat. E is a right ideal of

X, and X is hereditary; hence E   is flat. However Ex = EY, so fy- is flat. Then

by [4, Problem 10, p. 123], ED is flat.  Again by [12, p. 348], the induction

hypothesis, and [23, Corollary 3.2], it follows that V is semihereditary.

Since W has a semiprimary classical left quotient ring X, to show W is semi-

hereditary it suffices to show W is right semihereditary [32]. To do this, it is

sufficient to show that any finitely generated right ideal Iw contained in ek W is

projective for 1 < k < r. If 1 < k < r, ekW = ekV. Since V is semihereditary,

Iy is projective so Iw is projective.  Now let Iw be a submodule of erW and let

/ = 2£L1xfcW/ where erxkex = 0 for k = 1,..., t and erxkex = xk for k =

t+1.m. If/<t, thenxfW = x¡U. Let/ = 2£=1xfcW = 2[=1xfct/. Uis

semihereditary, so Jv is projective.  Let P ■ Xk>JekW and let 7^ be the trace

of P in /.  If r^ =£/, then •Homt/(/>, //I) = 0 since Pv is projective.  Therefore

J/T « Homyíí/, //7)o< HomyíP, //3T) © Hom^CÄTp J/T) = Hom^^,, J/T).

Hence J/T is a semisimple module of homogeneous type Ky, and consequently is

(7-projective.  Therefore / a¿ T © //T and / has a direct summand isomorphic to

Ky. If Py ^Ky, then (ATt)p   is not finitely generated by Lemma 3.6 (if Py =

Ky, then W = U is already semihereditary); hence we have a contradiction to the

fact that Jw is finitely generated. Hence T = / and / being ¿/-projective is a direct

summand of a direct sum of copies of P; J is thus W-projective.
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Now Iex has the same right Restructure as it has right Px structure. Jex is a

right {/-submodule of/; hence it is a module over Kx. Since F, is semisimple,

Jex is a direct summand of the Kx -module Prl. Since Px is a subring of F,, Jex

is a Px direct summand of any submodule of PrX containing Jex. In particular,

Jex is a direct summand of Iex ; so Iex = Jex@L for some submodule L ofIex.

But I = J + L and / n L = Jex n £ = 0, so / = / © L.   K is semihereditary so

Z, is F-projective.  Therefore L is Px -projective and hence W-projective.  Finally

we have Iw is projective and W is semihereditary.  Hence it follows that F is semi-

hereditary.  D

Remark.  Note that many of our arguments used only the fact that F was

a (left) p.p. ring with semiprimary classical left quotient ring Q. In fact, assum-

ing that F is (left) p.p. and that F and Q are as in (1) and (2), then each P, is

a left p.p. Goldie prime ring, each P,j is a right F-module and for each i, f,Re,_x

has projective left principal f,Rf,-submodules.  In particular this may shed some

light on Gordon's question [14] about left p.p. rings possessing a semiprimary

classical left quotient ring.

If F is a semihereditary PWD, then the Ff/'s are flat left F(.-modules. This

can be seen by considering the subring eRe where e = e, + e- and recalling that

eRe is semihereditary.  Unfortunately the condition in Theorem 3.7, f,Re,_x is a

flat left f,Rf,-module, cannot be replaced by the simpler condition, F«   is

a flat left F-module, as seen by the following example.   Let C^fc] be the

localization of the polynomial ring C[x] over the complex numbers at the

prime ideal (x). Then C^jfjc] will be a local principal ideal ring with completion

the ring of formal power series over C. Then by Kaplansky [24, p. 46] there

exists an indecomposable torsionfree module M of rank two over C^ [x].  Now

let

F =

R

C

M

0

R

M

0

0

C(*)Mj

where R denotes the field of real numbers.  The ring F has a semiprimary classi-

cal left quotient ring and the respective F^.'s are flat F-modules, but the ring is

not semihereditary. To see this, note that [^j needs two generators over the

ring

s=\R     °  *
M   c(x)[x]_

and hence [^J cannot be S-flat (equivalently projective) since it is indecompos-

able.  Consequently F is not semihereditary.

Notice that the ring S in the previous paragraph is a semihereditary ring by

Theorem 3.7; however, M is not a direct sum of uniform C^fc] ideals.  If F
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is a left hereditary ring possessing a semiprimary classical left quotient ring, we

will show that this cannot occur.

Let R be a semihereditary ring with semiprimary classical left quotient ring Q

as in (1) and (2). Now let e¡ ■ en + • • • + elßfi) where pii) is a positive integer

for i = 1,.... n and each eu is a primitive idempotent of Q. The following

lemma shows that we can reduce the study of projective modules in our situation

to indecomposable projective modules.

Lemma 3.8. Let R and Q be as in the previous paragraph. If I is a finitely

generated indecomposable left ideal of R, then QI is an indecomposable projec-

tive Q-module.  Furthermore, every projective R-module is a direct sum of inde-

composable finitely generated projective modules.

Proof. To prove the first statement, let / be a finitely generated indecompos-

able left ideal of R and let z0 be the largest i for which there is a nonzero pro-

jection of / into Rey. Since I is indecomposable, there is an / such that / pro-

jects monomorphically into Re¡ ..  Identify I with this image. Then QI C

QRei0i = Qeiai- Since e¡ I =£ 0 (otherwise a larger i could have been chosen),

QI QLNiQ)ei . so QI = Qe¡ , is indecomposable.

To prove the second statement, by Albrecht [1] each projective left R-module

is isomorphic to a direct sum of finitely generated left ideals of R; therefore it

is sufficient to show that each finitely generated left ideal is a direct sum of in-

decomposable left ideals. Let / be a finitely generated left ideal of R and let

the number of indecomposable direct summands of QI be k. The integer k is

uniquely determined since Q is semiprimary. Suppose / = I y © • • • © It where

each Ij + 0. Then by [31, Corollary 1.6], QI = QIX © QI2 © • • • © QIt. Thus

t < k and I can be written as a finite direct sum of indecomposable finitely

generated left ideals.   D

The next proposition is a key result in that it characterizes indecomposable

projective modules over left hereditary PWD's possessing a semiprimary classical

left quotient ring.

Proposition 3.9. Let R be a left hereditary ring possessing a semiprimary

classical left quotient ring Q with structure as in (1) and (2). If F is an indecom-

posable projective left R-module, then

F*<[Ua\NiR)eal]

where Ua is a finitely generated uniform projective submodule of p Ka for

some a.

Proof. By Lemma 3.8 and a simple induction on the triangular structure

of R, we may assume without loss of generality that F is a finitely generated

submodule of Qex x for which exF ± 0; i.e., F (J. NiQ)ex x.
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Since e,F =£ 0 and exF is a submodule of the uniform Px-module exQex x,

we may take U to be exF. Hence R[%] C F; that is,

t[u\P2lu'r--\p2XU] cf.

Now by Lemma 3.4,P,x is a right Kx-module; therefore Pn - P,XKXU =

F/1F1en = Pixex. ThusN(R)exx C F.  Letting/2 be as in Theorem 3.7, we

have N(R)ex x C f2F. We claim that N(R)ex, = f2F.

Let x Cf2F; we want to show that x E N(R)ex x. Since Px is a prime ring,

ex XF n Px ^ 0 for otherwise exF C\PX is a nilpotent left ideal of Px. So let y

be a nonzero element of ex XF O Px and then let z = x + y; note that x = f2z.

Rz is a cyclic submodule of the projective F-module F; hence Rz is projective.

As before N(R)ex x C Rz and y ¥= 0; therefore Rz must be indecomposable.

Thus Rz is isomorphic to a principal left ideal I of Rex. Let the image of z

under this isomorphism be w. Since ex xz ¥= 0, ex xw ^ 0 so w = [¿  °] where

F is partitioned as

F =
ejFe,      0

f2Rex   f2Rf2_

Since ena =£ 0, there exists an i such that ejjaej,. ^ 0.  By Gordon [17, Theo-

rem 2] there exists 0 =£ u E ex,Rex x.  Then au = wu =£ 0 since F is a PWD; so

Rwu and Fjaw are nonzero homomorphic images of Rw and Fja respectively.

Since Rwu is projective and both Rw and Pxa are indecomposable, it follows

that Rwu =* Rw and Pxau ^ Fja.  Thus we may assume that ex xaex x = a.

Now x Ef2Qex\f2Rex, so x = d~lc for d regular in/2F/2, c Ef2Rex.

Since* £F, c$.df2Rex. Now z = [£ £] and ./VíFJe, j CF^.  In particular,

there is a p Ef2Rex for which p>» = c. Note that p$d2f2Rex since c ^

df2Rex. Now

0

and

'i \y °i=r ° °i=r° °1
j liT'c   Oj    [ñy-da_1c OJ   [0   oj

[0       o"l [a   ol 0 ol
P   -dj \b   oj "jpa-i/i ol"

Since df2Rex is a right F¡ -module, df2Rex x is a right ex xKxex x = Dx-module.

Thus if pa E df2Rex x, we must have pex xaex x = pa E df2Rex x.  Since the ele-

ments of Dx = exxKxexx are invertible, p Gdf2Rexx, a contradiction.  Thus

x Ef2Rex as desired.    D

Let F be a prime left hereditary left Goldie ring with classical left quotient

ring F and e a primitive idempotent of F.  A finitely generated submodule of
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Ke containing Pe will be called a uniform fractional left P-ideal.

We now state our main structure theorem for left hereditary PWD's which

are left orders in a semiprimary classical left quotient ring. The P/s, P,y's, K¡%

Ky's and e(/'s are as defined in this section.

Theorem 3.10. Let R be an indecomposable, left hereditary ring possess-

ing a semiprimary classical left quotient ring Q with structure as in (1) and (2).

Then

(a) each P¡ is a left hereditary, left Noetherian prime ring;

(b) each P¡¡ is a right Kj-module;

(c) there is a sequence of integers i < í'(1) < • • • < iik) < n and a

sequence of ordinal numbers u(l),..., vik) such that

NiR)eif T\ i2
'u(l)

•pa
1 1

TO

Jv(a) Tí(*)

where

n = t[0\Ui{a)lNiR)ei(oi)}

and U¡,a) is a uniform projective fractional left P¡f(Jtyideal.

Conversely, any such matrix ring is a left hereditary ring possessing a semi-

primary classical left quotient ring.

Proof.  As in the proof of Theorem 3.7, P¡ = eiRe¡ is a left hereditary

prime Goldie ring, so P¡ is left Noetherian by Levy [25].  By Lemma 3.4, P,, is

a right ATy-module.

Now consider NiR)e¡¡. R is left hereditary so NiR)eu is projective; hence

NiR)ey =©fieA'« where each/6 is a finitely generated indecomposable projec-

tive Ä-module.  Then NiQ)e(j = QNiR)eij = (B6(EAQI8, where each QI& will be

indecomposable and g-projective by Lemma 3.8. Thus QIS is isomorphic to Qes

for some primitive idempotent es of Q. Since e5QIô ¥=0,esI6 =£0 so e8Is is iso-

morphic to a uniform submodule of K6ed • Letting u8 ¥= 0 G esIs, it follows from

the proof of Proposition 3.9 that Qu6 at Qe5 = QI6. As in Theorem 2.1, a "new

basis" can be chosen so that each u5 is a small identity matrix.  Furthermore,

there are integers / < z'(l) < • • • < iik) < n and ordinal number v(l),..., v(k)

such that the «5's can be indexed as mJj's as in Theorem 2.1.  In this case

N(Q)e„ - c\ C1L2 r1
Cu(l) CJ CU(C() Cv(k)\
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where each C% is the collection of matrices of the form

r[o i Qei(a)x].

This induces a representation for F so that

N(R)eif 7»0) 11
'pOt •

Yu(<*)   :
Tk
'v(k)

where each Tß is a finitely generated indecomposable projective submodule of

Cß containing Re,(ay Then by Proposition 3.9,

Tßa=t[0\U,{a)\N(R)emx]

where t/"f(aj is a uniform projective fractional left P^^-ideal.

To prove the converse, suppose F and Q have the indicated structure.  As

in the proof of the converse of Theorem 3.7, we induct on the number of cen-

tral idempotents of R/N. If n = 1, the result is trivial. Now assume that the

result holds for k < n. Let / be a left ideal of F and show that / is projective.

We may assume that IC Re,-. If IC N(R)e,,, then I is a projective left

fi+iRfj+i-module by the induction hypothesis when/j-+1 = e,+ l + • • • + eH\

hence / is F-projective. lîICf. N(R)e,j, then e,I is a uniform left F-ideal.  Hence

by the proof of Proposition 3.9, N(R)e,j C I and I/N(R)e,j is finitely generated

since P, is left Noetherian.  But N(R)ei]- is small in I so I is finitely generated.

Therefore, I is projective, since by Theorem 3.7, F is semihereditary.  Thus F is

left hereditary.   D

The following example illustrates the power of Theorem 3.10.

Example.  Let F be a field, F[x] the ring of polynomials over F and F(x)

the quotient field of F[x]. Then the ring

F

F

F

0

F

0

0

F[x]i   F[x]    F[x]

has a semiprimary classical left quotient ring

F       0        0

F       F       0

F(x)   Fix) Fix)
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However, by Theorem 3.11, R is not left hereditary since N(R)ey is not the set

of matrices over Re2. Note that the ring

F 0 o"

F F 0

nx]x   F[x]1-    F[x]

is left hereditary.    D

We now shift our direction towards two-sided classical quotient rings.  In

case a semihereditary ring possesses a semiprimary classical two-sided quotient

ring, then every flat left ß-module is also i?-flat.  Thus Theorem 3.7 reduces to

Theorem 3.11. Let R be an indecomposable semihereditary ring with

semiprimary classical two-sided quotient ring Q.   Then each P¡ is a semiheredi-

tary two-sided Goldie prime ring with two-sided classical quotient ring K¡ and

Py = Ky. Conversely, any such ring is semihereditary.

Remark. Theorem 3.11 gives a surprisingly complete characterization of a

class of semihereditary rings including the class of two-sided finite dimensional

rings; it basically says that such a ring is a hereditary semiprimary ring except

that prime rings are sprinkled along the diagonal.

Now let R be a two-sided hereditary ring which is a two-sided order in a

semiprimary ring. Then by Lemma 3.6, K¡ cannot be a projective left or right

P-module unless P¡ — K¡. Hence it follows that Ky = 0 whenever P¡ ¥= K¡ or P¡

¥=Kj. Thus we can order the P,'s such that R sa [ß °,] where A is a semipri-

mary ring and S is a direct sum of prime rings. Putting all of this together, we

have

Theorem 3.12. A itwo-sided) hereditary ring which is a two-sided order in

a semiprimary ring is a direct sum of a semiprimary ring and a semiprime ring.   D

As a corollary we have a new proof of Chatters' result [9] which does not

use the restricted minimum condition.

Corollary 3.13. A hereditary Noetherian ring is a direct sum of an Ar-

tinian ring and a direct sum of prime rings.    D

Finally we consider the situation when a semihereditary ring with semipri-

mary classical left quotient ring has a two-sided maximal quotient ring. Part (i)

of the following theorem has already been proved by Goodearl [13] ; however,

our proof is somewhat shorter than his.
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Theorem 3.14. Let R be an indecomposable semihereditary ring with

semiprimary classical left quotient ring Q.  If R has a two-sided maximal quotient

ring T, then

(i) Q is Morita equivalent to a full block lower triangular matrix ring over

a division ring iand hence is a hereditary serial ring); and

iii) each P, is a two-sided order in K, and K,.- = P,.-.

Proof.   First we show (i).  As in §2, F will be a direct sum of full linear

rings over division rings. Since F is the two-sided maximal quotient ring of F, F

will be left and right self-injective.  Since a full linear ring is two-sided self-injec-

tive if and only if it is semisimple (Osofsky [26] ) and Q is semiprimary, we

have that Q is right and left Artinian by Sandomierski [28].   Since by

Cateforis [6], a semisimple maximal left quotient ring is two-sided if and

only if injective hulls of finitely generated projective modules are flat, it will be

sufficient to assume that Q is basic.  In that case the structure of Q is given by

Theorem 2.1.  In terms of the notation of Theorem 2.1, by the left-hand version

of Theorem 2.1, • • • /| > /2 > • • • > ln and by the right-hand version of Theorem 2.1,

ln> ln_x> • " >lx. Thus /j = l2 = • • • = ln. By Proposition 2.7, the ranks

for a family of generators for Ne, must be /,-; hence it must be that Qen is the

only projective simple left module and each Qe, has simple socle. Thus it follows

that Q is a lower block matrix ring over some division ring.

To prove (ii) note that since the maximal quotient ring F of F is two-sided,

F must be the two-sided maximal quotient ring of Q also.  Hence F is semisimple

and Q is a hereditary serial ring by the first part of the proof.  It follows that

RR must have finite Goldie dimension and F is a two-sided order in Q. Then the

desired structure follows from Theorem 3.11.   D
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