Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Wedderburn principal theorem for generalized alternative algebras. I


Author: Harry F. Smith
Journal: Trans. Amer. Math. Soc. 212 (1975), 139-148
MSC: Primary 17D05
DOI: https://doi.org/10.1090/S0002-9947-1975-0376796-4
MathSciNet review: 0376796
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A generalized alternative ring I is a nonassociative ring R in which the identities $ (wx,y,z) + (w,x,(y,z)) - w(x,y,z) - (w,y,z)x;((w,x),y,z) + (w,x,yz) - y(w,x,z) - (w,x,y)z$; and $ (x,x,x)$ are identically zero. Let A be a finite-dimensional algebra of this type over a field F of characteristic $ \ne 2,3$. Then it is established that (1) A cannot be a nodal algebra, and (2) the standard Wedderburn principal theorem is valid for A.


References [Enhancements On Off] (What's this?)

  • [1] J. D. Arrison and M. Rich, On nearly commutative degree one algebras, Pacific J. Math. 35 (1970), 533-536. MR 43 #298. MR 0274535 (43:298)
  • [2] N. Jacobson, A theorem on the structure of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 140-147. MR 17, 822. MR 0075934 (17:822c)
  • [3] E. Kleinfeld, Generalization of alternative rings. I, J. Algebra 18 (1971), 304-325. MR 43 #308. MR 0274545 (43:308)
  • [4] E. Kleinfeld, F. Kosier, J. M. Osborn and D. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473-483. MR 28 #1221. MR 0157993 (28:1221)
  • [5] D. J. Rodabaugh, On the Wedderburn principal theorem, Trans. Amer. Math. Soc. 138 (1969), 343-361. MR 0330240 (48:8578)
  • [6] R. D. Schafer, The Wedderburn principal theorem for alternative algebras, Bull. Amer. Math. Soc. 55 (1949), 604-614. MR 10, 676. MR 0029895 (10:676g)
  • [7] -, Standard algebras, Pacific J. Math. 29 (1969), 203-223. MR 39 #5647. MR 0244332 (39:5647)
  • [8] H. F. Smith, Prime generalized alternative rings I with nontrivial idempotent, Proc. Amer. Math. Soc. 39 (1973), 242-246. MR 47 #1903. MR 0313348 (47:1903)
  • [9] -, The Wedderburn principal theorem for a generalization of alternative algebras, Trans. Amer. Math. Soc. 198 (1974), 139-154. MR 0352187 (50:4674)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17D05

Retrieve articles in all journals with MSC: 17D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0376796-4
Keywords: Generalized alternative ring I, Jordan algebra, nodal algebra, Penico solvable, semisimple, Wedderburn principal theorem
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society