Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integration of functions with values in locally convex Suslin spaces


Author: G. Erik F. Thomas
Journal: Trans. Amer. Math. Soc. 212 (1975), 61-81
MSC: Primary 28A45
DOI: https://doi.org/10.1090/S0002-9947-1975-0385067-1
MathSciNet review: 0385067
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of the paper is to give some easily applicable criteria for summability of vector valued functions with respect to scalar measures. One of these is the following: If E is a quasi-complete locally convex Suslin space (e.g. a separable Banach or Fréchet space), $ H \subset E'$ is any total subset, and f is an E-valued function which is Pettis summable relative to the ultra weak topology $ \sigma (E,H)$. f is actually Pettis summable for the given topology. (Thus any E-valued function for which the integrals over measurable subsets can be reasonably defined as elements of E is Pettis summable.) A class of ``totally summable'' functions, generalising the Bochner integrable functions, is introduced. For these Fubini's theorem, in the case of a product measure, and the differentiation theorem, in the case of Lebesgue measure, are valid. It is shown that weakly summable functions with values in the spaces $ D,E,S,D',E',S'$, and other conuclear spaces, are ipso facto totally summable.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), 357-378. MR 1501815
  • [2] S. Bochner, Integration von Funktionen, derer Werte die Elemente eines Vectorräumes sind, Fund. Math 20 (1938), 262-276.
  • [3] N. Bourbaki, Eléments de mathématique. XVIII. Part 1: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chap. 4, Actualités Sci. Indust., no. 1229, Hermann, Paris, 1955. MR 17, 1109. MR 0077882 (17:1109d)
  • [4] -, Eléments de mathématique. XXV. Part 1: Les structures fondamentales de l'analyse. Livre VI: Intégration. Chap. 6, Actualités Sci. Indust., no. 1281, Hermann, Paris, 1959. MR 23 #A2033.
  • [5] J. P. R. Christensen, Borel structures and a topological zero-one law, Math. Scand. 29 (1971), 245-255. MR 47 #2021. MR 0313467 (47:2021)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7., Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [7] L. M. Graves, Riemann integration and Taylor's theorem in general analysis, Trans. Amer. Math. Soc. 29 (1927), 163-177. MR 1501382
  • [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Chap. 1: Produits tensoriels topologiques, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [9] -, Produits tensoriels topologiques et espaces nucléaires, Chap. 2: Espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [10] T. H. Hildebrandt, Integration in abstract spaces, Bull. Amer. Math. Soc. 59 (1953), 111-139. MR 14, 735. MR 0053191 (14:735c)
  • [11] B. J. Pettis, On integration in vector spaces. Trans. Amer. Math. Soc. 44 (1938), 277-304. MR 1501970
  • [12] A. Pietsch, Nukleare Lokalkonvexe Räume, Akademie-Verlag, Berlin, 1965. MR 31 #6114. MR 0181888 (31:6114)
  • [13] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Publ. Tata Inst. of Fundamental Research, Oxford Univ. Press, 1973. MR 0426084 (54:14030)
  • [14] G. E. F. Thomas, The Lebesgue-Nikodym theorem for vector valued Radon measures, Mem. Amer. Math. Soc. No. 139 (1974).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A45

Retrieve articles in all journals with MSC: 28A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0385067-1
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society