Integrability of infinite sums of independent vector-valued random variables

Authors:
Naresh C. Jain and Michael B. Marcus

Journal:
Trans. Amer. Math. Soc. **212** (1975), 1-36

MSC:
Primary 60G15; Secondary 60B05, 60G50

DOI:
https://doi.org/10.1090/S0002-9947-1975-0385995-7

MathSciNet review:
0385995

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *B* be a normed vector space (possibly a Banach space, but it could be more general) and a sequence of *B*-valued independent random variables on some probability space. Let and is norm, whenever it exists. Assuming that *S* exists or a.s. and given certain nondecreasing functions , we find conditions in terms of the distributions of such that or is finite.

Let be a sequence of elements in *B* and a sequence of independent, identically distributed random variables such that . We prove some comparison theorems which generalize the following *contraction principle* of Kahane: If is a bounded sequence of scalars, then converges in norm a.s. (or is bounded a.s.) implies the corresponding conclusion for the series . Some generalizations of this contraction principle have already been carried out by Hoffmann-Jørgensen. All these earlier results are subsumed by ours.

Applications of our results are made to Gaussian processes, random Fourier series and other random series of functions.

**[1]**W. Feller (1966),*An introduction to probability theory and its applications*. Vol. II, Wiley, New York. MR**35**#1048. MR**0210154 (35:1048)****[2]**X. Fernique (1970),*Intégrabilité des vecteurs Gaussiens*, C. R. Acad. Sci. Paris Sér. A-B 270, A1698-A1699. MR**42**#1170. MR**0266263 (42:1170)****[3]**J. Hoffmann-Jørgensen (1973),*Sums of independent Banach space valued random variables*, Aarhus Universitet Matematisk Institut, Denmark (preprint).**[3a]**-(1974),*Sums of independent Banach space valued random variables*, Studia Math.**52**(1974), 159-186. MR**0356155 (50:8626)****[4]**N. C. Jain and M. B. Marcus (1974),*Sufficient conditions for the continuity of stationary Gaussian processes and applications to random series of functions*, Ann. Inst. Fourier (Grenoble)**24**, 117-141. MR**0413239 (54:1356)****[5]**J.-P. Kahane (1968),*Some random series of functions*, Heath, Lexington, Mass. MR**40**#8095. MR**0254888 (40:8095)****[6]**H. J. Landau and L. A. Shepp (1970),*On the supremum of a Gaussian process*, Sankhyā Ser. A**32**, 369-378. MR**44**#3381. MR**0286167 (44:3381)****[7]**M. B. Marcus (1974),*Uniform convergence of random Fourier series*, Ark. Mat. (to appear). MR**0372994 (51:9196)****[8]**G. Pisier (1973),*Type des espaces normes*, C. R. Acad. Sci. Paris Sér. A--B 276, A1673-A1676. MR**0342989 (49:7733)****[9]**A. V. Skorohod (1970),*A note on Gaussian measures in Banach space*, Teor. Verojatnost. i Primenen. 15, 519-520. (Russian) MR**43**#3417. MR**0277684 (43:3417)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60G15,
60B05,
60G50

Retrieve articles in all journals with MSC: 60G15, 60B05, 60G50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0385995-7

Keywords:
Integrability,
infinite series,
Banach space valued random variables,
convergence in norm,
contraction principle,
uniformly nondegenerate,
Rademacher sequence

Article copyright:
© Copyright 1975
American Mathematical Society