Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On properties of the approximate Peano derivatives


Author: Bruce S. Babcock
Journal: Trans. Amer. Math. Soc. 212 (1975), 279-294
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9947-1975-0414803-0
MathSciNet review: 0414803
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of kth approximate Peano differentiation not only generalizes kth ordinary differentiation but also kth Peano differentiation and kth $ {L_p}$ differentiation. Recently, M. Evans has shown that a kth approximate Peano derivative at least shares with these other derivatives the property of belonging to Baire class one. In this paper the author extends the properties possessed by a kth approximate Peano derivative by showing that it is like the above derivatives in that it also possesses the following properties: Darboux, Denjoy, Zahorski, and a new property stronger than the Zahorski property, Property Z.


References [Enhancements On Off] (What's this?)

  • [1] A. Denjoy, Sur une propriété des fonctions dérivées exactes, L'Enseignment Math. 18 (1916), 320-328.
  • [2] M. J. Evans, $ {L_p}$ derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388. MR 45 #2110. MR 0293030 (45:2110)
  • [3] C. Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962-966. MR 22 #9562. MR 0118792 (22:9562)
  • [4] S. Marcus, On a theorem of Denjoy and on approximate derivative, Monatsh. Math. 66 (1962), 435-440. MR 27 #1543. MR 0151558 (27:1543)
  • [5] C. J. Neugebauer, Darboux functions of Baire class one and derivatives, Proc. Amer. Math. Soc. 13 (1962), 838-843. MR 26 #1400. MR 0143850 (26:1400)
  • [6] H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 15, 944. MR 0062207 (15:944d)
  • [7] G. P. Tolstov, Sur la dérivée approximative exacte, Mat. Sb. 4 (1938), 499-504.
  • [8] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 33 (1971), 313-324. MR 44 #2896. MR 0285678 (44:2896)
  • [9] C. E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. MR 31 #283. MR 0176007 (31:283)
  • [10] -, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973), 527-536. MR 0335703 (49:483)
  • [11] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. MR 12, 247. MR 0037338 (12:247c)
  • [12] A. Zygmund, Trigonometric series, 2nd ed., Vols. I, II, Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0414803-0
Keywords: Approximate derivatives, approximate Peano derivatives, Baire class one, Darboux property, Denjoy property, Zahorski property, Property Z
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society