Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Heegaard splittings of branched coverings of $ S\sp{3}$


Authors: Joan S. Birman and Hugh M. Hilden
Journal: Trans. Amer. Math. Soc. 213 (1975), 315-352
MSC: Primary 55A10
DOI: https://doi.org/10.1090/S0002-9947-1975-0380765-8
MathSciNet review: 0380765
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns itself with the relationship between two seemingly different methods for representing a closed, orientable 3-manifold: on the one hand as a Heegaard splitting, and on the other hand as a branched covering of the 3-sphere. The ability to pass back and forth between these two representations will be applied in several different ways:

1. It will be established that there is an effective algorithm to decide whether a 3-manifold of Heegaard genus 2 is a 3-sphere.

2. We will show that the natural map from 6-plat representations of knots and links to genus 2 closed oriented 3-manifolds is injective and surjective. This relates the question of whether or not Heegaard splittings of closed, oriented 3-manifolds are ``unique'' to the question of whether plat representations of knots and links are ``unique".

3. We will give a counterexample to a conjecture (unpublished) of W. Haken, which would have implied that $ {S^3}$ could be identified (in the class of all simply-connected 3-manifolds) by the property that certain canonical presentations for $ {\pi _1}{S^3}$ are always ``nice".

The final section of the paper studies a special class of genus 2 Heegaard splittings: the 2-fold covers of $ {S^3}$ which are branched over closed 3-braids. It is established that no counterexamples to the ``genus 2 Poincaré conjecture'' occur in this class of 3-manifolds.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, A note on Riemann space, Bull. Amer. Math. Soc. 26 (1919), 370-372. MR 1560318
  • [2] -, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
  • [3] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
  • [4] -, Theory of braids, Ann. of Math. (2) 48 (1947), 101-126. MR 8, 367. MR 0019087 (8:367a)
  • [5] J. S. Birman, Plat presentations for link groups, Comm. Pure Appl. Math. 26 (1973), 673-678. MR 0336734 (49:1507)
  • [6] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, no. 82, Princeton Univ. Press, Princeton, N. J., 1975. MR 0375281 (51:11477)
  • [7] J. S. Birman and H. M. Hilden, On the mapping class groups of closed surface as covering spaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N. Y., 1969), Ann. of Math. Studies, no. 66, Princeton Univ. Press, Princeton, N. J., 1971, pp. 81-115. MR 45 #1169. MR 0292082 (45:1169)
  • [8] -, The homeomorphism problem for $ {S^3}$, Bull. Amer. Math. Soc. 79 (1973), 1006-1010. MR 47 #7726. MR 0319180 (47:7726)
  • [9] W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hansischen Univ. 11 (1936), 171-178.
  • [10] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 14, Springer-Verlag, Berlin and New York, 1965. MR 30 #4818. MR 0174618 (30:4818)
  • [11] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206. MR 1555438
  • [12] R. H. Fox, On the total curvature of some tame knots, Ann. of Math. (2) 52 (1950), 258-260. MR 12, 273. MR 0037510 (12:273d)
  • [13] -, Knots and periodic transformations, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 177-182. MR 25 #3524. MR 0140101 (25:3524)
  • [14] R. H. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126. MR 27 #742. MR 0150755 (27:742)
  • [15] C. McA. Gordon and W. Heil, Simply-connected branched coverings of $ {S^3}$, Proc. Amer. Math. Soc. 35 (1972), 287-288. MR 45 #5989. MR 0296930 (45:5989)
  • [16] W. Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245-375. MR 25 #4519a. MR 0141106 (25:4519a)
  • [17] W. B. R. Lickorish, A representation or orientable, combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. MR 27 #1929. MR 0151948 (27:1929)
  • [18] -, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778; Corrigendum, ibid. 62 (1966), 679-681. MR 30 #1500; 34 #799. MR 0171269 (30:1500)
  • [19] W. Magnus, Über Automorphismen von Fundamental-Gruppen berandeter Flächen, Math. Ann. 109 (1934), 617-646. MR 1512913
  • [20] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617. MR 0207802 (34:7617)
  • [21] W. Magnus and A. Pelluso, On knot groups, Comm. Pure Appl. Math. 20 (1967), 749-770. MR 36 #5930. MR 0222880 (36:5930)
  • [22] W. S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, New York, 1967. MR 35 #2271. MR 0211390 (35:2271)
  • [23] J. W. Milnor, On the total curvature of knots, Ann. of Math. (2) 52 (1950), 248-257. MR 12, 273. MR 0037509 (12:273c)
  • [24] José M. Montesinos, 3-variétés que ne sont pas revêtements cycliques remifiés sur $ {S^3}$, Proc. Amer. Math. Soc. 47 (1975), 495-500. MR 0353293 (50:5777)
  • [25] -, Surgery of links for double branched covers of $ {S^3}$, Ann. of Math. Studies, no. 184, Princeton Univ. Press, Princeton, N. J., 1975.
  • [26] K. Murasugi, On closed 3-braids, Mem. Amer. Math. Soc., no. 151, 1974. MR 0356023 (50:8496)
  • [27] C. D. Papakyriakopoulos, Dehn's Lemma and the asphericity of knots, Ann. of Math. (2) 96 (1957), 1-26. MR 0090053 (19:761a)
  • [28] -, Some problems on 3-dimensional manifolds, Bull. Amer. Math. Soc. 64 (1958), 317-335. MR 21 #1600. MR 0102814 (21:1600)
  • [29] K. Reidemeister, Knoten und Geflechte, Nachr. Akad. Wiss. Göttingen Math.-Phys. K1. II 1960, 105-115. MR 22 #1913. MR 0111048 (22:1913)
  • [30] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 18, 498. MR 0082104 (18:498e)
  • [31] -, Bestimmung der Primfaktorzerlegung von Verkettung, Math. Z. 76 (1961), 116-148. MR 25 #4519b. MR 0141107 (25:4519b)
  • [32] O. Ja. Viro, Linkings, two-sheeted branched coverings, and braids, Mat. Sb. 87 (129) (1972), 216-228 = Math. USSR Sb. 16 (1972), 223-236. MR 45 #7701. MR 0298649 (45:7701)
  • [33] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195-203. MR 37 #3576. MR 0227992 (37:3576)
  • [34] -, Über Involutioen der 3-Sphäre, Topology 8 (1969), 81-91. MR 38 #5209. MR 0236916 (38:5209)
  • [35] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231. MR 43 #4018a. MR 0278287 (43:4018a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55A10

Retrieve articles in all journals with MSC: 55A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0380765-8
Keywords: Poincaré conjecture, Heegaard splittings, branched covering spaces, three-manifolds, three-sphere, Smith conjecture, plats, links, closed braids, bridge number
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society