-sets in ANR's

Author:
David W. Henderson

Journal:
Trans. Amer. Math. Soc. **213** (1975), 205-216

MSC:
Primary 54C55; Secondary 57A20

DOI:
https://doi.org/10.1090/S0002-9947-1975-0391008-3

MathSciNet review:
0391008

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: (1) *Let A be a closed Z-set in an ANR X. Let* *be an open cover of X. Then there is a homotopy inverse* *to the inclusion* *such that f and both homotopies are limited by* .

(2) *If, in addition, X is a manifold modeled on a metrizable locally convex TVS, F, such that F is homeomorphic to* , *then there is a homotopy* *limited by* *such that the closure* (*in X*) *of* *is contained in* .

**[1]**R. D. Anderson,*On topological infinite deficiency*, Michigan Math. J.**14**(1967), 365-383. MR**35**#4893. MR**0214041 (35:4893)****[2]**R. D. Anderson, D. W. Henderson and J. E. West,*Negligible subsets of infinite-dimensional manifolds*, Compositio Math.**21**(1969), 143-150. MR**39**#7630. MR**0246326 (39:7630)****[3]**K. Borsuk,*Theory of retracts*, Monografie Mat., tom 44, PWN, Warsaw, 1967. MR**35**#7306. MR**0216473 (35:7306)****[4]**T. A. Chapman,*Deficiency in infinite-dimensional manifolds*, General Topology and Appl.**1**(1971), 263-272. MR**48**#1259. MR**0322898 (48:1259)****[5]**C. H. Dowker,*Mapping theorems for non-compact spaces*, Amer. J. Math.**69**(1947), 200-242. MR**8**, 594. MR**0020771 (8:594g)****[6]**-,*On affine and euclidean complexes*, Dokl. Akad. Nauk SSSR**128**(1959), 655-656. (Russian) MR**22**#8483. MR**0117708 (22:8483)****[7]**J. Dugundji,*Topology*, Allyn and Bacon, Boston, Mass., 1966. MR**33**#1824. MR**0193606 (33:1824)****[8]**J. Eells, Jr. and N. H. Kuiper,*Homotopy negligible subsets*, Compositio Math.**21**(1969), 155-161. MR**40**#6546. MR**0253331 (40:6546)****[9]**R. Engelking,*Outline of general topology*, PWN, Warsaw, 1965; English transl., North-Holland, Amsterdam; Interscience, New York, 1968. MR**36**#4508;**37**#5836. MR**0230273 (37:5836)****[10]**A. M. Gleason,*Spaces with a compact Lie group of transformations*, Proc. Amer. Math. Soc.**1**(1950), 35-43. MR**11**, 497. MR**0033830 (11:497e)****[11]**R. Heisey,*Manifolds modelled on**or bounded weak*-*topologies*, Trans. Amer. Math. Soc.**206**(1975), 295-312. MR**0397768 (53:1626)****[12]**D. W. Henderson,*Corrections and extensions of two papers about infinite-dimensional manifolds*, General Topology and Appl.**1**(1971), 321-327. MR**45**#2754. MR**0293677 (45:2754)****[13]**-,*Stable classification of infinite-dimensional manifolds by homotopy-type*Invent. Math.**12**(1971), 48-56. MR**44**#7594. MR**0290413 (44:7594)****[14]**-,*Micro-bundles with infinite-dimensional fibers are trivial*, Invent. Math.**11**(1970), 293-303. MR**43**#8092. MR**0282380 (43:8092)****[15]**J. Kelley, I. Namioka et al.,*Linear topological spaces*, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1963. MR**29**#3851. MR**0166578 (29:3851)****[16]**W. K. Mason,*Deficiency in spaces of homeomorphisms*(to appear).**[17]**R. M. Schori,*Topological stability for infinite-dimensional manifolds*, Compositio Math.**23**(1971), 87-100. MR**44**#4789. MR**0287586 (44:4789)****[18]**H. Torunczyk, (*G, K*)-*skeleton and absorbing sets in complete metric spaces*, Fund. Math. (to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54C55,
57A20

Retrieve articles in all journals with MSC: 54C55, 57A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0391008-3

Article copyright:
© Copyright 1975
American Mathematical Society