Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The residue calculus in several complex variables


Author: Gerald Leonard Gordon
Journal: Trans. Amer. Math. Soc. 213 (1975), 127-176
MSC: Primary 32C30; Secondary 32A25
DOI: https://doi.org/10.1090/S0002-9947-1975-0430297-3
MathSciNet review: 0430297
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let W be a complex manifold and V an analytic variety. Then homology classes in $ W - V$ which bound in V, called the geometric residues, are studied. In fact, a long exact sequence analogous to the Thom-Gysin sequence for nonsingular V is formed by a geometric construction. A geometric interpretation of the Leray spectral sequence of the inclusion of $ W - V \subset V$ is also given.

If the complex codimension of V is one, then one shows that each cohomology class of $ W - V$ can be represented by a differential form of the type $ \theta \wedge \lambda + \eta $ where $ \lambda $ is the kernel associated to V and $ \theta \vert V$ is the Poincaré residue of this class.


References [Enhancements On Off] (What's this?)

  • [1] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713-717. MR 0177422 (31:1685)
  • [2] C. H. Clemens, Jr., Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93-108. MR 38 #2135. MR 0233814 (38:2135)
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216. MR 0140802 (25:4216)
  • [4] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. No. 40 (1972), 5-57. MR 0498551 (58:16653a)
  • [5] G. L. Gordon, Differentials of the second kind (to appear). MR 0466145 (57:6026)
  • [6] -, A Poincaré type theorem for polyhedra, Ann. Inst. Fourier (Grenoble) 22 (1972), 47-58. MR 0339141 (49:3904)
  • [7] P. A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228-296. MR 41 #3470. MR 0258824 (41:3470)
  • [8] P. A. Griffiths, On the periods of certain rational integrals. I, Ann. of Math. (2) 90 (1969), 460-495. MR 14 #5357. MR 0260733 (41:5357)
  • [9] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203, 205-326. MR 33 #7333. MR 0199184 (33:7333)
  • [10] -, Sub-analytic sub-sets (to appear).
  • [11] W. V. D. Hodge and M. F. Atiyah, Integrals of the second kind on an algebraic variety, Ann. of Math. (2) 62 (1955), 56-91. MR 17, 533. MR 0074082 (17:533d)
  • [12] D. Liberman and M. Herrera, Residues and principle values on complex spaces, Math. Ann. 194 (1971), 259-294. MR 0296352 (45:5413)
  • [13] M. Lejeune and B. Teissier, Quelques calculs utiles pour la résolution des singularitiés, Seminar at École Polytechnique, 1972.
  • [14] J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81-180. MR 23 #A3281. MR 0125984 (23:A3281)
  • [15] J. Milnor, Differential structures, Mimeographed notes, Princeton, 1961.
  • [16] -, Differentiable manifolds which are homotopy spheres, Mimeographed notes, Princeton, 1959.
  • [17] -, Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, Princeton Univ. Press, Princeton, N.J., Univ. of Tokyo Press, Tokyo, 1968. MR 39 #969. MR 0239612 (39:969)
  • [18] B. G. Moĭšezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225-268 = Math. USSR Izv. 1 (1967), 209-251. MR 35 #4215. MR 0213351 (35:4215)
  • [19] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1961), 5-22. MR 27 #3643. MR 0153682 (27:3643)
  • [20] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with $ {C^\ast}$actions, Ann. of Math. 93 (1971), 205-228. MR 0284435 (44:1662)
  • [21] F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965), 333-367. MR 33 #4064. MR 0195868 (33:4064)
  • [22] J. B. Poly, Sur un théorème de J. Leray en théorie des résidues (to appear). MR 0289807 (44:6994)
  • [23] G. Robin, Formes semi-méromorphes et cohomologie du complémentaire d'une hypersurface d'une variété analytique complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A33-A35. MR 44 #476. MR 0283243 (44:476)
  • [24] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284. MR 39 #970. MR 0239613 (39:970)
  • [25] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419-454. MR 45 #264. MR 0291170 (45:264)
  • [26] A. Weil, Introduction à l'étude des variétés kähleriennes, Publ. Inst. Math. Univ. Nancago, VI, Actualités Sci. Ind., no. 1267, Hermann, Paris, 1958. MR 22 #1921. MR 0111056 (22:1921)
  • [27] H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Sympos. in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205-244. MR 32 #5924. MR 0188486 (32:5924)
  • [28] O. Zariski, Algebraic surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, Springer-Verlag, Berlin, 1935. MR 0469915 (57:9695)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C30, 32A25

Retrieve articles in all journals with MSC: 32C30, 32A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0430297-3
Keywords: Residues, analytic varieties, Thom-Gysin sequence, Whitney stratification, tubular neighborhoods, normal crossings, Poincaré residue operator, poles of order one
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society