Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Müntz-Szász theorem with integral coefficients. II


Authors: Le Baron O. Ferguson and Manfred von Golitschek
Journal: Trans. Amer. Math. Soc. 213 (1975), 115-126
MSC: Primary 41A30
MathSciNet review: 0430619
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical Müntz-Szász theorem concerns uniform approximation on [0, 1] by polynomials whose exponents are taken from a sequence of real numbers. Under mild restrictions on the exponents or the interval, the theorem remains valid when the coefficients of the polynomials are taken from the integers.


References [Enhancements On Off] (What's this?)

  • [1] David G. Cantor, On approximation by polynomials with algebraic integer coefficients., Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967) Amer. Math. Soc., Providence, R.I., 1969, pp. 1–13. MR 0257025 (41 #1680)
  • [2] Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, Mathematical Surveys, vol. 17, American Mathematical Society, Providence, R.I., 1980. MR 560902 (81g:41011)
  • [3] Le Baron O. Ferguson, Uniform approximation by polynomials with integral coefficients. I, II., Pacific J. Math. 27 (1968), 53-69; ibid. 26 (1968), 273–281. MR 0236566 (38 #4861)
  • [4] Le Baron O. Ferguson, Müntz-Szász theorem with integral coefficients. I, Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), Springer, Berlin, 1974, pp. 119–122. Lecture Notes in Math., Vol. 399. MR 0430618 (55 #3623)
  • [5] Manfred von Golitschek, Erweiterung der Approximationssätze von Jackson im Sinne von Ch. Müntz. II, J. Approximation Theory 3 (1970), 72–86 (German). MR 0257623 (41 #2273)
  • [6] S. Kakeya, On approximate polynomials, Tôhoku Math. J. 6 (1914), 182-186.
  • [7] Ch. H. Müntz, Uber den Approximationssatz von Weierstrass, Math. Abhandlungen H. A. Schwarz zu seinem 50, Doktorjubiläum gewidmet, Berlin, 1914, pp. 303-312.
  • [8] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142 (98a:01023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A30

Retrieve articles in all journals with MSC: 41A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1975-0430619-3
PII: S 0002-9947(1975)0430619-3
Keywords: Müntz's theorem, Müntz-Szász theorem, polynomials with integral coefficients, approximation by polynomials with integral coefficients
Article copyright: © Copyright 1975 American Mathematical Society