Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Müntz-Szász theorem with integral coefficients. II


Authors: Le Baron O. Ferguson and Manfred von Golitschek
Journal: Trans. Amer. Math. Soc. 213 (1975), 115-126
MSC: Primary 41A30
DOI: https://doi.org/10.1090/S0002-9947-1975-0430619-3
MathSciNet review: 0430619
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical Müntz-Szász theorem concerns uniform approximation on [0, 1] by polynomials whose exponents are taken from a sequence of real numbers. Under mild restrictions on the exponents or the interval, the theorem remains valid when the coefficients of the polynomials are taken from the integers.


References [Enhancements On Off] (What's this?)

  • [1] D. G. Cantor, On approximation by polynomials with algebraic integer coefficients, Proc, Sympos. Pure Math., vol. 12, Amer. Math. Soc., Providence, R. I., 1969, pp. 1-13. MR 41 #1680. MR 0257025 (41:1680)
  • [2] L. B. O. Ferguson, Uniform approximation by polynomials with integral coefficients. I, Pacific J. Math. 27 (1968), 53-69. MR 38 #4861. MR 560902 (81g:41011)
  • [3] -, Uniform approximation by polynomials with integral coefficients. II, Pacific J. Math. 26 (1968), 273-281. MR 38 #4861. MR 0236566 (38:4861)
  • [4] -, Müntz-Szász theorem with integral coefficients. I, Functional Analysis and its Application, International Conference (Madras, 1973), Lecture Notes in Math., vol. 399, Springer-Verlag, Berlin, 1974, pp. 119-122. MR 0430618 (55:3623)
  • [5] M. von Golitschek, Erweiterung der Approximationssätze von Jackson im Sinne von Ch. Müntz. II, J. Approximation Theory 3 (1970), 72-86. MR 41 #2273. MR 0257623 (41:2273)
  • [6] S. Kakeya, On approximate polynomials, Tôhoku Math. J. 6 (1914), 182-186.
  • [7] Ch. H. Müntz, Uber den Approximationssatz von Weierstrass, Math. Abhandlungen H. A. Schwarz zu seinem 50, Doktorjubiläum gewidmet, Berlin, 1914, pp. 303-312.
  • [8] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R. I., 1934. MR 1451142 (98a:01023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A30

Retrieve articles in all journals with MSC: 41A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0430619-3
Keywords: Müntz's theorem, Müntz-Szász theorem, polynomials with integral coefficients, approximation by polynomials with integral coefficients
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society