Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A formula for the tangent bundle of flag manifolds and related manifolds


Author: Kee Yuen Lam
Journal: Trans. Amer. Math. Soc. 213 (1975), 305-314
MSC: Primary 57D20; Secondary 57F20
DOI: https://doi.org/10.1090/S0002-9947-1975-0431194-X
MathSciNet review: 0431194
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A formula is given for the tangent bundle of a flag manifold G in terms of canonically defined vector bundles over G. The formula leads to a unified proof of some parallelizability theorems of Stiefel manifolds. It can also be used to deduce some immersion theorems for flag manifolds.


References [Enhancements On Off] (What's this?)

  • [1] P. F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305-336. MR 32 #6490. MR 0189063 (32:6490)
  • [2] G. E. Bredon and A. Kosinski, Vector fields on $ \pi $-manifolds, Ann. of Math. (2) 84 (1966), 85-90. MR 34 #823. MR 0200937 (34:823)
  • [3] S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39-46. MR 36 #3373a. MR 0220307 (36:3373a)
  • [4] S. Gitler, The projective Stiefel manifolds. II. Applications, Topology 7 (1968), 47-53. MR 36 #3373b. MR 0220308 (36:3373b)
  • [5] W. Greub, S. Halperin and R. Vanstone, Connection, curvature, and cohomology. Vol. II, Academic Press, New York, 1973. MR 0400275 (53:4110)
  • [6] D. Handel, A note on the parallelizability of real Stiefel manifolds, Proc. Amer. Math. Soc. 16 (1965), 1012-1014. MR 32 #457. MR 0182975 (32:457)
  • [7] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980. MR 0119214 (22:9980)
  • [8] W. C. Hsiang and R. H. Szczarba, On the tangent bundle of a Grassman manifold, Amer. J. Math. 86 (1964), 698-704. MR 30 #2523. MR 0172304 (30:2523)
  • [9] I. R. Porteous, Topological geometry, Van Nostrand Reinhold, New York, 1969. MR 40 #8059. MR 0254852 (40:8059)
  • [10] W. A. Sutherland, A note on the parallelizability of sphere-bundles over spheres, J. London Math. Soc. 39 (1964), 55-62. MR 30 #5327. MR 0175142 (30:5327)
  • [11] J. Tornehave, Immersions of complex flagmanifolds, Math. Scand. 23 (1968), 22-26 (1969). MR 40 #4970. MR 0251743 (40:4970)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D20, 57F20

Retrieve articles in all journals with MSC: 57D20, 57F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0431194-X
Keywords: Real, complex and quaternionic flag manifolds, tangent bundle, canonical vector bundles over flag manifolds, parallelizability of Stiefel manifolds, projective Stiefel manifolds, immersion of flag manifolds into Euclidean spaces
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society