Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Gaussian law and the law of the iterated logarithm for lacunary sets of characters


Author: E. Dudley
Journal: Trans. Amer. Math. Soc. 214 (1975), 187-214
MSC: Primary 42A44; Secondary 43A46, 60F15
DOI: https://doi.org/10.1090/S0002-9947-1975-0380246-1
MathSciNet review: 0380246
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Salem and Zygmund showed that the Gaussian law holds for Hadamard sequences of real numbers while Mary Weiss proved a similar result for the law of the iterated logarithm. In the present paper, the author obtains corresponding results for lacunary sets of characters of an arbitrary infinite compact abelian group. It is shown that the laws are best satisfied for a certain class of lacunary sets but that modified results apply to more general classes.


References [Enhancements On Off] (What's this?)

  • [R] C. Baker [1] On Wiener's theorem on Fourier Stieltjes coefficients and the Gaussian law, Proc. London Math. Soc. (3) 25 (1972), 525-542. MR 46 #5929. MR 0306807 (46:5929)
  • [S] W. Drury [1] The Fatou-Zygmund property for Sidon sets, Bull. Amer. Math. Soc. 80 (1974), 535-538. MR 0336239 (49:1015)
  • 1. Robert E. Edwards, Edwin Hewitt and Kenneth A. Ross [1] Lacunarity for compact groups. I, Indiana Univ. Math. J. 21 (1971/72), 787-806. MR 45 #6981. MR 0297929 (45:6981)
  • 2. -[2] Lacunarity for compact groups. III, Studia Math. 44 (1972), 19-66. MR 0340982 (49:5732)
  • [P] Erdös and I. S. Gál [1] On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 58 = Indag. Math. 17 (1955), 65-84. MR 16, 1016. MR 0069309 (16:1016g)
  • [B] V. Gnedenko [1] Course in the theory of probability, 4th ed., ``Nauka", Moscow, 1965; English trans., Chelsea, New York, 1967. MR 36 #913. MR 0045321 (13:565f)
  • 3. Edwin Hewitt and Kenneth A. Ross [1] Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • 4. -[2] Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Academic Press, New York; Springer-Verlag, Berlin, 1970. MR 41 #7378; erratum, 42, p. 1825. MR 0262773 (41:7378)
  • 5. Edwin Hewitt and Herbert S. Zuckerman [1] Some theorems on lacunary Fourier series, with extensions to compact groups, Trans. Amer. Math. Soc. 93 (1959), 1-19. MR 21 #7400. MR 0108685 (21:7400)
  • [A] Kolmogorov [1] Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), 126-135. MR 1512520
  • [P] Révész [1] Some remarks on strongly multiplicative systems, Acta Math. Acad. Sci. Hungar. 16 (1965), 441-446. MR 32 #3097. MR 0185635 (32:3097)
  • 6. Daniel G. Rider [1] Gap series on groups and spheres, Canad. J. Math. 18 (1966), 389-398. MR 32 #8047. MR 0190635 (32:8047)
  • [R] Salem and A. Zygmund [1] On lacunary trigonometric series. I, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333-338. MR 9, 181. MR 0022263 (9:181d)
  • 7. -[2] On lacunary trigonometric series. II, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 54-62. MR 9, 425. MR 0023936 (9:425h)
  • 8. -[3] La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math. (2) 74 (1950), 209-224. MR 12, 605. MR 0039828 (12:605c)
  • [S] B. Stečkin [1] On absolute convergence of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 385-412. (Russian) MR 18, 126. MR 0079678 (18:126f)
  • 9. Mary Weiss [1] The law of the iterated logarithm for lacunary trigonometric series, Trans. Amer. Math. Soc. 91 (1959), 444-469. MR 21 #7396. MR 0108681 (21:7396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A44, 43A46, 60F15

Retrieve articles in all journals with MSC: 42A44, 43A46, 60F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0380246-1
Keywords: Compact abelian group, lacunary sets of characters, Stečkin sets, dissociate sets, Hadamard sequences, normal distribution, integral estimates, dyadic representation of natural numbers
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society