functions, positivedefinite functions and moment problems
Author:
P. H. Maserick
Journal:
Trans. Amer. Math. Soc. 214 (1975), 137152
MSC:
Primary 43A35; Secondary 44A10, 44A50
MathSciNet review:
0380272
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let S be a commutative semigroup with identity 1 and involution. A complex valued function f on S is defined to be positive definite if where the 's belong to a certain class of linear sums of shift operators. For discrete groups the positive definite functions defined herein are shown to be the classically defined positive definite functions. An integral representation theorem is proved and necessary and sufficient conditions for a function to be the difference of two positivedefinite functions, i.e. a BVfunction, are given. Moreover the BVfunction defined herein agrees with those previously defined for semilattices, with respect to the identity involution. Connections between the positivedefinite functions and completely monotonic functions are discussed along with applications to moment problems.
 [1]
H. Bauer, Konvexität in topologischen Vektorräumen, Lecture Notes, University of Hamburg, West Germany.
 [2]
A.
H. Clifford and G.
B. Preston, The algebraic theory of semigroups. Vol. I,
Mathematical Surveys, No. 7, American Mathematical Society, Providence,
R.I., 1961. MR
0132791 (24 #A2627)
 [3]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 [4]
G.
G. Lorentz, Bernstein polynomials, Mathematical Expositions,
no. 8, University of Toronto Press, Toronto, 1953. MR 0057370
(15,217a)
 [5]
N.
J. Fine and P.
H. Maserick, On the simplex of completely monotonic functions on a
comutative semigroup, Canad. J. Math. 22 (1970),
317–326. MR 0257688
(41 #2338)
 [6]
J.
Kist and P.
H. Maserick, BVfunctions on semilattices, Pacific J. Math.
37 (1971), 711–723. MR 0306417
(46 #5543)
 [7]
R.
J. Lindahl and P.
H. Maserick, Positivedefinite functions on involution
semigroups, Duke Math. J. 38 (1971), 771–782.
MR
0291826 (45 #916)
 [8]
P.
H. Maserick, Moment and BVfunctions on commutative
semigroups, Trans. Amer. Math. Soc. 181 (1973), 61–75. MR 0396835
(53 #695), http://dx.doi.org/10.1090/S00029947197303968352
 [9]
M.
A. \cyr{N}aĭmark, Normirovannye koltsa, Izdat.
“Nauka”, Moscow, 1968 (Russian). Second edition, revised. MR 0355602
(50 #8076)
 [10]
Stephen
E. Newman, Measure algebras and functions of
bounded variation on idempotent semigroups, Trans. Amer. Math. Soc. 163 (1972), 189–205. MR 0308686
(46 #7800), http://dx.doi.org/10.1090/S00029947197203086864
 [11]
Robert
R. Phelps, Lectures on Choquet’s theorem, D. Van
Nostrand Co., Inc., Princeton, N.J.Toronto, Ont.London, 1966. MR 0193470
(33 #1690)
 [12]
D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
 [1]
 H. Bauer, Konvexität in topologischen Vektorräumen, Lecture Notes, University of Hamburg, West Germany.
 [2]
 A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Math. Surveys, no 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
 [3]
 N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
 [4]
 G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, no. 8, Univ. of Toronto Press, Toronto, 1953. MR 15, 217. MR 0057370 (15:217a)
 [5]
 N. J. Fine and P. H. Maserick, On the simplex of completely monotonic functions on a commutative semigroup, Canad. J. Math. 22 (1970), 317326. MR 41 #2338. MR 0257688 (41:2338)
 [6]
 J. Kist and P. H. Maserick, BVfunctions on semilattices, Pacific J. Math. 37 (1971), 711723. MR 46 #5543. MR 0306417 (46:5543)
 [7]
 R. J. Lindahl and P. H. Maserick, Positivedefinite functions on involution semigroups, Duke Math. J. 38 (1971), 771782. MR 45 #916. MR 0291826 (45:916)
 [8]
 P. H. Maserick, Moment and BVfunctions on commutative semigroups, Trans. Amer. Math. Soc. 181 (1973), 6175. MR 0396835 (53:695)
 [9]
 M. A. Naimark, Normed rings, 2nd rev. ed., ``Nauka", Moscow, 1968; English transl., WoltersNoordhoff, Groningen, 1972. MR 0355602 (50:8076)
 [10]
 S. E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Trans. Amer. Math. Soc. 163 (1972), 189205. MR 46 #7800. MR 0308686 (46:7800)
 [11]
 R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. MR 0193470 (33:1690)
 [12]
 D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
43A35,
44A10,
44A50
Retrieve articles in all journals
with MSC:
43A35,
44A10,
44A50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503802722
PII:
S 00029947(1975)03802722
Keywords:
BVfunctions,
positivedefinite function,
completely monotonic function,
semigroup,
moment problem,
semicharacter,
integral representation,
finite difference,
vector lattice,
Banach algebra,
convolution of measures
Article copyright:
© Copyright 1975
American Mathematical Society
