-functions, positive-definite functions and moment problems

Author:
P. H. Maserick

Journal:
Trans. Amer. Math. Soc. **214** (1975), 137-152

MSC:
Primary 43A35; Secondary 44A10, 44A50

DOI:
https://doi.org/10.1090/S0002-9947-1975-0380272-2

MathSciNet review:
0380272

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *S* be a commutative semigroup with identity 1 and involution. A complex valued function *f* on *S* is defined to be positive definite if where the 's belong to a certain class of linear sums of shift operators. For discrete groups the positive definite functions defined herein are shown to be the classically defined positive definite functions. An integral representation theorem is proved and necessary and sufficient conditions for a function to be the difference of two positive-definite functions, i.e. a BV-function, are given. Moreover the BV-function defined herein agrees with those previously defined for semilattices, with respect to the identity involution. Connections between the positive-definite functions and completely monotonic functions are discussed along with applications to moment problems.

**[1]**H. Bauer,*Konvexität in topologischen Vektorräumen*, Lecture Notes, University of Hamburg, West Germany.**[2]**A. H. Clifford and G. B. Preston,*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791****[3]**Nelson Dunford and Jacob T. Schwartz,*Linear Operators. I. General Theory*, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR**0117523****[4]**G. G. Lorentz,*Bernstein polynomials*, Mathematical Expositions, no. 8, University of Toronto Press, Toronto, 1953. MR**0057370****[5]**N. J. Fine and P. H. Maserick,*On the simplex of completely monotonic functions on a comutative semigroup*, Canad. J. Math.**22**(1970), 317–326. MR**0257688**, https://doi.org/10.4153/CJM-1970-039-4**[6]**J. Kist and P. H. Maserick,*BV-functions on semilattices*, Pacific J. Math.**37**(1971), 711–723. MR**0306417****[7]**R. J. Lindahl and P. H. Maserick,*Positive-definite functions on involution semigroups*, Duke Math. J.**38**(1971), 771–782. MR**0291826****[8]**P. H. Maserick,*Moment and BV-functions on commutative semigroups*, Trans. Amer. Math. Soc.**181**(1973), 61–75. MR**0396835**, https://doi.org/10.1090/S0002-9947-1973-0396835-2**[9]**M. A. Naĭmark,*\cyr Normirovannye kol′tsa*, Izdat. “Nauka”, Moscow, 1968 (Russian). Second edition, revised. MR**0355602****[10]**Stephen E. Newman,*Measure algebras and functions of bounded variation on idempotent semigroups*, Trans. Amer. Math. Soc.**163**(1972), 189–205. MR**0308686**, https://doi.org/10.1090/S0002-9947-1972-0308686-4**[11]**Robert R. Phelps,*Lectures on Choquet’s theorem*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0193470****[12]**D. V. Widder,*The Laplace transform*, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR**3**, 232.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
43A35,
44A10,
44A50

Retrieve articles in all journals with MSC: 43A35, 44A10, 44A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0380272-2

Keywords:
BV-functions,
positive-definite function,
completely monotonic function,
semigroup,
moment problem,
semicharacter,
integral representation,
finite difference,
vector lattice,
Banach algebra,
convolution of measures

Article copyright:
© Copyright 1975
American Mathematical Society