Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ o$-weakly compact mappings of Riesz spaces


Author: P. G. Dodds
Journal: Trans. Amer. Math. Soc. 214 (1975), 389-402
MSC: Primary 47B55; Secondary 46E40
DOI: https://doi.org/10.1090/S0002-9947-1975-0385629-1
MathSciNet review: 0385629
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is given of linear mappings from a Riesz space to a Banach space which map order intervals to relatively weakly compact sets. The characterization is based on recent results of Burkinshaw and Fremlin. A number of applications are made to known results concerning weakly compact mappings and to results in the theory of Banach space-valued measures.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya, On ordered topological linear spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 14-23. MR 25 #2411. MR 0138971 (25:2411)
  • [2] T. Andô, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395-404. MR 25 #1255. MR 0137806 (25:1255)
  • [3] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305. MR 16, 1123. MR 0070050 (16:1123c)
  • [4] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [5] J. K. Brooks and R. S. Jewett, On finitely additive vector measures, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294-1298. MR 42 #4697. MR 0269802 (42:4697)
  • [6] O. Burkinshaw, Weak compactness in the order dual of a vector lattice, Trans. Amer. Math. Soc. 187 (1974), 183-201. MR 0394098 (52:14904)
  • [7] M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21, Springer-Verlag, Berlin, 1958. MR 20 #1187. MR 0094675 (20:1187)
  • [8] J. Diestel and B. Faires, On vector measures (preprint). MR 0350420 (50:2912)
  • [9] J. Dieudonné, Sur la convergence des suites de mésures de Radon, An. Acad. Brasil. Ci. 23 (1951), 21-38. MR 13, 121. MR 0042496 (13:121a)
  • [10] P. G. Dodds, Sequential convergence in the order duals of certain classes of Riesz spaces, Trans. Amer. Math. Soc. 203 (1975), 391-403. MR 0358282 (50:10748)
  • [11] B. Faires, On Vitali-Hahn-Saks type theorems, Notices Amer. Math. Soc. 21 (1974), A-174. Abstract #711-46-1. MR 0377509 (51:13681)
  • [12] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, New York, 1973. MR 0454575 (56:12824)
  • [13] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [14] S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90. MR 19, 868. MR 0090774 (19:868c)
  • [15] -, Closure properties of $ C(X)$ in its second dual, Proc. Amer. Math. Soc. 17 (1966), 401-406. MR 32 #6260. MR 0188828 (32:6260)
  • [16] -, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259-298. MR 41 #5932. MR 0261317 (41:5932)
  • [17] I. Kluvánek, Intégrale vectorielle de Daniell, Mat.-Fyz. Časopis Sloven. Akad. Vied. 15 (1965), 146-161. MR 38 #295. MR 0231969 (38:295)
  • [18] -, The extension and closure of vector measure, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973. MR 0335741 (49:521)
  • [19] W. A. J. Luxemburg, Notes on Banach function spaces. XIVa, Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math. 27 (1965), 229-239. MR 32 #6202a. MR 0188766 (32:6202a)
  • [20] W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. VI-XIII, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 655-681, 104-119; ibid. A 67 = Indag. Math. 26 (1964), 360-376, 493-543. MR 28 #5324a, b; #3381a, b. MR 0162125 (28:5324b)
  • [21] -, Riesz spaces. I, North-Holland, Amsterdam, 1971.
  • [22] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. MR 23 #A3441. MR 0126145 (23:A3441)
  • [23] H. P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of $ C(S)$ for Stonian S, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165-1169. MR 37 #6740. MR 0231185 (37:6740)
  • [24] Erik Thomas, L'intégration par rapport à une mésure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 2, 55-191. MR 0463396 (57:3348)
  • [25] J. J. Uhl, Jr., Applications of a lemma of Rosenthal to vector measures and series in Banach spaces (preprint).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B55, 46E40

Retrieve articles in all journals with MSC: 47B55, 46E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0385629-1
Keywords: Riesz spaces, locally s-bounded vector measures, disjoint sequences, $ C(K)$ operator theory
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society