Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infinite convolutions on locally compact Abelian groups and additive functions


Author: Philip Hartman
Journal: Trans. Amer. Math. Soc. 214 (1975), 215-231
MSC: Primary 60B15; Secondary 10K99, 43A05
DOI: https://doi.org/10.1090/S0002-9947-1975-0400333-9
MathSciNet review: 0400333
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mu _1},{\mu _2}, \ldots $ be regular probability measures on a locally compact Abelian group G such that $ \mu = {\mu _1} \ast {\mu _2} \ast \cdots = \lim {\mu _1} \ast \cdots \ast {\mu _n}$ exists (and is a probability measure). For arbitrary G, we derive analogues of the Lévy theorem on the existence of an atom for $ \mu $ and of the ``pure theorems'' of Jessen, Wintner and van Kampen (dealing with discrete $ {\mu _1},{\mu _2}, \ldots $) in the case $ G = {R^d}$. These results are applied to the asymptotic distribution $ \mu $ of an additive function $ f:{Z_ + } \to G$ after generalizing the Erdös-Wintner result $ (G = {R^1})$ which implies that $ \mu $ is an infinite convolution of discrete probability measures.


References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and R. Godement, Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79-99. MR 9, 326. MR 0023241 (9:326d)
  • [2] H. Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 273-304. MR 30 #72. MR 0169829 (30:72)
  • [3] -, On the distribution modulo 1 of additive functions, J. Indian Math. Soc. 34 (1970), 215-235. MR 0491576 (58:10805)
  • [4] J. L. Doob, Stochastic processes, Wiley, New York; Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [5] P. T. D. A. Elliott, The continuity of the limiting distribution of additive functions $ \pmod 1$ (to appear).
  • [6] P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713-721. MR 1, 40. MR 0000247 (1:40c)
  • [7] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365-403. MR 37 #6254. MR 0230694 (37:6254)
  • [8] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [9] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88. MR 1501802
  • [10] E. R. van Kampen, Infinite product measures and infinite convolutions, Amer. J. Math. 62 (1940), 417-448. MR 1, 209. MR 0001282 (1:209d)
  • [11] P. Lévy, Sur les séries dont les termes sont des variables éventuelles indépendantes, Studia Math. 3 (1931), 119-155.
  • [12] M. Loève, Probability theory. Foundations. Random sequences, 3rd ed., Van Nostrand, Princeton, N. J., 1963. MR 34 #3596. MR 0203748 (34:3596)
  • [13] R. M. Loynes, Products of independent random elements in a topological group, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 446-455. MR 27 #6293. MR 0156370 (27:6293)
  • [14] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107-150; English transl., Amer. Math. Soc. Transl. (1) 10 (1962), 1-54. MR 11, 18. MR 0030584 (11:18f)
  • [15] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808. MR 0152834 (27:2808)
  • [16] A. Wintner, Asymptotic distributions and infinite convolutions, Lecture Notes, The Institute for Advanced Study, Princeton, N. J., 1938.
  • [17] -, The Fourier transforms of probability distributions, Lecture Notes, Baltimore, 1947.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60B15, 10K99, 43A05

Retrieve articles in all journals with MSC: 60B15, 10K99, 43A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0400333-9
Keywords: Locally compact Abelian groups, regular probability measures, infinite convolutions, absolutely continuous, purely discontinuous (= discrete), singular measures, additive functions, asymptotic distributions
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society