Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On angular momentum Helmholtz theorems and cohomology of Lie algebras


Author: Henrik Stetkaer
Journal: Trans. Amer. Math. Soc. 214 (1975), 349-374
MSC: Primary 57E20; Secondary 58F05
DOI: https://doi.org/10.1090/S0002-9947-1975-0410775-3
MathSciNet review: 0410775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Helmholtz' 2nd theorem (that every vector field on $ {{\mathbf{R}}^3}$ with vanishing curl is gradient of a function) can be viewed as a statement about the group of translations of $ {{\mathbf{R}}^3}$. We prove similar theorems for other Lie transformation groups, in particular for semidirect products of abelian and compact semisimple groups. Using Hodge theory we also obtain results analogous to the 1st Helmholtz theorem, but only for compact Lie transformation groups.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXV. Part 1. Livre VI: Intégration. Chap. 6: Intégration vectorielle, Actualités Sci. Indust., no. 1281, Hermann, Paris, 1959. MR 23 #A2033. MR 0124722 (23:A2033)
  • [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [3] J. T. Cannon and T. F. Jordan, A no-interaction theorem in classical relativistic Hamiltonian particle dynamics, J. Mathematical Phys. 5 (1964), 299-307. MR 30 #887. MR 0170649 (30:887)
  • [4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. MR 9, 567. MR 0024908 (9:567a)
  • [5] J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), 183-269. MR 0388464 (52:9300)
  • [6] W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 493-504. MR 15, 505.
  • [7] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York and London, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [8] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401. MR 26 #5092. MR 0147577 (26:5092)
  • [9] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York and London, 1962. MR 26 #1345. MR 0143793 (26:1345)
  • [10] J. B. Keller, Simple proofs of the theorems of J. S. Lomont and H. E. Moses on the decomposition and representations of vector fields, Comm. Pure Appl. Math. 14 (1961), 77-80. MR 23 #B3. MR 0126955 (23:B3)
  • [11] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; 2nd ed., 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 33 #3069; 40 #1750.
  • [12] H. Leutwyler, Group-theoretical basis of the angular momentum Helmholtz theorem of Lomont and Moses, Nuovo Cimento 37 (1965), 543-555.
  • [13] -, A no-interaction theorem in classical relativistic Hamiltonian particle mechanics, Nuovo Cimento 37 (1965), 556-567.
  • [14] J. S. Lomont and H. E. Moses, An angular momentum Helmholtz theorem, Comm. Pure Appl. Math. 14 (1961), 69-76. MR 23 #B2. MR 0126954 (23:B2)
  • [15] O. Loos, Symmetric spaces. I: General theory, Benjamin, New York and Amersterdam, 1969. MR 39 #365a. MR 0239005 (39:365a)
  • [16] M. S. Ragunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972. MR 0507234 (58:22394a)
  • [17] V. S. Varadajaran, Geomerty of quantum theory. II, Van Nostrand, Princeton, N. J., 1970.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E20, 58F05

Retrieve articles in all journals with MSC: 57E20, 58F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0410775-3
Keywords: Differential 1-forms, Helmholtz theorems, Hodge theory, Lie algebra cohomology, Lie transformation group
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society