Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A property for inverses in a partially ordered linear algebra


Authors: Taen Yu Dai and Ralph DeMarr
Journal: Trans. Amer. Math. Soc. 215 (1976), 285-292
MSC: Primary 06A70
DOI: https://doi.org/10.1090/S0002-9947-1976-0382116-2
MathSciNet review: 0382116
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a Dedekind $ \sigma $-complete partially ordered linear algebra A which has the following property: if $ x \in A$ and $ 1 \leqslant x$, then $ - u \leqslant {x^{ - 1}}$, where $ u = {u^2}$. This property is used to show that A must be commutative. We also show that A is the direct sum of two algebras, each of which behaves like an algebra of real-valued functions.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [2] Taen-yu Dai, On some special classes of partially ordered linear algebras, J. Math. Anal. Appl. 40 (1972), 649-682. MR 0316342 (47:4890)
  • [3] Ralph DeMarr, A class of partially ordered linear algebras, Proc. Amer. Math. Soc. 39 (1973), 255-260. MR 47 #1716. MR 0313161 (47:1716)
  • [4] D. W. Duboic, A note on David Harrison's theory of preprimes, Pacific J. Math. 21(1967), 15-19. MR 35 #103. MR 0209200 (35:103)
  • [5] -, Second note on David Harrison's theory of preprimes, Pacific J. Math. 24 (1968), 57-68. MR 36 #5049. MR 0221997 (36:5049)
  • [6] R. E. Jamison, Functional representation of algebraic intervals, Pacific J. Math. (to appear). MR 0365145 (51:1398)
  • [7] R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951). MR 13, 360. MR 0044040 (13:360b)
  • [8] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [9] B. Z. Vulih, Introduction to the theory of partially ordered spaces, Fizmatgiz, Moscow, 1961; English transl., Wolters-Noordhoff, Groningen, 1967. MR 24 #A3494; 37 #121. MR 0224522 (37:121)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A70

Retrieve articles in all journals with MSC: 06A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0382116-2
Keywords: Dedekind $ \sigma $-complete partially ordered linear algebra, algebra of real-valued functions, f-ring, matrix inequalities
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society