Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some $ C\sp{\ast} $-alegebras with a single generator


Authors: Catherine L. Olsen and William R. Zame
Journal: Trans. Amer. Math. Soc. 215 (1976), 205-217
MSC: Primary 46L05
DOI: https://doi.org/10.1090/S0002-9947-1976-0388114-7
MathSciNet review: 0388114
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper grew out of the following question: If X is a compact subset of $ {C^n}$, is $ C(X) \otimes {{\mathbf{M}}_n}$ (the $ {C^\ast}$-algebra of $ n \times n$ matrices with entries from $ C(X)$) singly generated? It is shown that the answer is affirmative; in fact, $ A \otimes {{\mathbf{M}}_n}$ is singly generated whenever A is a $ {C^\ast}$-algebra with identity, generated by a set of $ n(n + 1)/2$ elements of which $ n(n - 1)/2$ are selfadjoint. If A is a separable $ {C^\ast}$-algebra with identity, then $ A \otimes K$ and $ A \otimes U$ are shown to be singly generated, where K is the algebra of compact operators in a separable, infinite-dimensional Hilbert space, and U is any UHF algebra. In all these cases, the generator is explicitly constructed.


References [Enhancements On Off] (What's this?)

  • [1] J. Brenner, The problem of unitary equivalence, Acta Math. 86 (1951), 297-308. MR 13, 717. MR 0046334 (13:717h)
  • [2] J. Bunce and J. Deddens, A family of simple $ {C^\ast}$-algebras related to weighted shift operators (preprint).
  • [3] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc. 6 (1955), 970-972. MR 17, 389. MR 0073138 (17:389a)
  • [4] J. Dixmier, Les $ {C^\ast}$-algèbres et leurs représentations, 2ième éd., Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 39 #7442. MR 0246136 (39:7442)
  • [5] R. G. Douglas and Carl Pearcy, Von Neumann algebras with a single generator, Michigan Math. J. 16 (1969), 21-26. MR 39 #6089. MR 0244775 (39:6089)
  • [6] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [7] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340. MR 22 #2915. MR 0112057 (22:2915)
  • [8] C. Pearcy, $ {W^\ast}$-algebras with a single generator, Proc. Amer. Math. Soc. 13 (1962), 831-832. MR 27 #2875. MR 0152904 (27:2875)
  • [9] -, On certain von Neumann algebras which are generated by partial isometries, Proc. Amer. Math. Soc. 15 (1964), 393-395. MR 28 #4380. MR 0161172 (28:4380)
  • [10] C. M. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. MR 36 #2006. MR 0218922 (36:2006)
  • [11] S. Sakai, $ {C^\ast}$-algebras and $ {W^\ast}$-algebras, Springer-Verlag, New York, 1971. MR 0442701 (56:1082)
  • [12] T. Saitô, On generators of von Neumann algebras, Michigan Math. J. 15 (1968), 373-376. MR 38 #5019. MR 0236724 (38:5019)
  • [13] N. Suzuki and T. Saitô, On the operators which generate continuous von Neumann algebras, Tôhoku Math. J. (2) 15 (1963), 277-280. MR 27 #4094. MR 0154143 (27:4094)
  • [14] D. M. Topping, UHF algebras are singly generated, Math. Scand. 22 (1968), 224-226 (1969). MR 39 #6097. MR 0244783 (39:6097)
  • [15] -, Lectures on von Neumann algebras, Van Nostrand, Princeton, N. J., 1971.
  • [16] W. Wogen, On generators for von Neumann algebras, Bull. Amer. Math. Soc. 75 (1969), 95-99. MR 38 #5020. MR 0236725 (38:5020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0388114-7
Keywords: $ {C^\ast}$-algebras, generators, matrix algebras, tensor products, compact operators, UHF algebra
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society