Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Almost isolated spectral parts and invariant subspaces


Author: C. R. Putnam
Journal: Trans. Amer. Math. Soc. 216 (1976), 267-277
MSC: Primary 47A10; Secondary 47B20
DOI: https://doi.org/10.1090/S0002-9947-1976-0385599-7
MathSciNet review: 0385599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be an operator with spectrum $ \sigma (T)$ on a Hilbert space. A compact subset E of $ \sigma (T)$ is called a disconnected part of $ \sigma (T)$ if, for some bounded open set A, E is the closure of $ \sigma (T) \cap A$ and $ \sigma (T) - E$ is the union of the isolated parts of $ \sigma (T)$ lying completely outside the closure of A. The set E is called an almost isolated part of $ \sigma (T)$ if, in addition, the set A can be chosen so as to have a rectifiable boundary $ \partial A$ on which the subset $ \sigma (T) \cap \partial A$ has arc length measure 0. The following results are obtained. If T is subnormal and if E is a disconnected part of $ \sigma (T)$ then there exists a reducing subspace $ \mathfrak{M}$ of T for which $ \sigma (T\vert\mathfrak{M}) = E$. If $ {T^\ast}$ is hyponormal and if E is an almost isolated part of $ \sigma (T)$ then there exists an invariant subspace $ \mathfrak{M}$ of T for which $ \sigma (T\vert\mathfrak{M}) = E$. An example is given showing that if T is arbitrary then an almost isolated part of $ \sigma (T)$ need not be the spectrum of the restriction of T to any invariant subspace.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, Introduction to Hilbert space, Univ. Texts in the Math. Sciences, Oxford Univ. Press, New York, 1961. MR 25 #1424. MR 0137976 (25:1424)
  • [2] K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239-244. MR 45 #934. MR 0291844 (45:934)
  • [3] -, The spectra of hyponormal integral operators, Comment. Math. Helv. 46 (1971), 451-456. MR 46 #731. MR 0301573 (46:731)
  • [4] R. W. Carey and J. D. Pincus, Construction of seminormal operators with prescribed mosaic (preprint). MR 0338829 (49:3593)
  • [5] R. G. Douglas, P. S. Muhly and C. Pearcy, Lifting commuting operators, Michigan Math. J. 15 (1968), 385-395. MR 38 #5046. MR 0236752 (38:5046)
  • [6] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [7] R. G. Lautzenheiser, Spectral sets, reducing subspaces, and function algebras, Thesis, Indiana Univ., 1973.
  • [8] C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967. MR 36 #707. MR 0217618 (36:707)
  • [9] -, An inequality for the area of hyponormal spectra, Math. Z. 28 (1971), 473-477.
  • [10] -, Resolvent vectors, invariant subspaces and sets of zero capacity, Math. Ann. 205 (1973), 165-171. MR 48 #4772. MR 0326428 (48:4772)
  • [11] -, Almost normal operators, their spectra and invariant subspaces, Bull. Amer. Math. Soc. 79 (1973), 615-624. MR 49 #3582. MR 0338818 (49:3582)
  • [12] -, The role of zero sets in the spectra of hyponormal operators, Proc. Amer. Math. Soc. 43 (1974), 137-140. MR 48 #12130. MR 0333808 (48:12130)
  • [13] -, Invariant subspaces of certain subnormal operators, J. Functional Analysis 17 (1974), 263-273. MR 0358394 (50:10860)
  • [14] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akad. Kiadó, Budapest, 1953; English transl., Functional analysis, Ungar, New York, 1955. MR 15, 132; 17, 175. MR 0071727 (17:175i)
  • [15] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)
  • [16] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476; Errata, ibid. 115 (1965), 550. MR 30 #3375; 33 #4686. MR 0173161 (30:3375)
  • [17] -, A local spectral theory for operators. IV. Invariant subspaces, Indiana Univ. Math. J. 22 (1972/73), 159-167. MR 45 #5793. MR 0296734 (45:5793)
  • [18] -, Spectral subspaces for hyponormal operators (preprint).
  • [19] B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris; Akad. Kiadó. Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947.
  • [20] J. P. Williams, Minimal spectral sets of compact operators, Acta Sci. Math. (Szeged) 28 (1967), 93-106. MR 36 #725. MR 0217636 (36:725)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A10, 47B20

Retrieve articles in all journals with MSC: 47A10, 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0385599-7
Keywords: Isolated part of spectrum, disconnected part of spectrum, almost isolated part of spectrum, invariant subspaces, subnormal operators, hyponormal operators
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society