Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Convolution, differential equations, and entire functions of exponential type
HTML articles powered by AMS MathViewer

by Dale H. Mugler PDF
Trans. Amer. Math. Soc. 216 (1976), 145-187 Request permission

Abstract:

The Whittaker-Shannon interpolation formula, or “cardinal series", is a special case of the more general linear integro-differential equation with constant complex coefficients $\Sigma _{n = 0}^\infty {a_n}{f^{(n)}}(z) = \smallint f(z - t)d\mu (t)$ where the integral is taken over the whole real line with respect to the measure $\mu$. In this study, I show that many of these equations provide representations for particular classes of entire functions of exponential type. That is, every function in the class satisfies the equation and conversely every solution of the equation is a member of the class of functions. When the measure in the convolution integral above is chosen to be discrete, a particular form of the above type of equation is an equation of periodicity $f(z) = f(z + \tau )$. Following an extensive treatment of the general equation written above, the study concludes by offering a generalization in terms of these convolution equations of a classical theorem in complex analysis concerning periodic entire functions.
References
  • Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
  • R. P. Boas Jr., Functions of exponential type. III, Duke Math. J. 11 (1944), 507–511. MR 10723
  • R. P. Boas Jr. and H. Pollard, Continuous analogues of series, Amer. Math. Monthly 80 (1973), 18–25. MR 315354, DOI 10.2307/2319254
  • Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
  • Avner Friedman, Generalized functions and partial differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0165388
  • A. O. Gel′fond, Linear differential equations of infinite order with constant coefficients and asymptotic periods of entire functions, Trudy Mat. Inst. Steklov. 38 (1951), 42–67 (Russian). MR 0047776
  • André Giroux, Une remarque sur l’interpolation des fonctions entières, Private communication, 1973.
  • I. Halperin and H. R. Pitt, Integral inequalities connected with differential operators, Duke Math. J. 4 (1938), no. 3, 613–625. MR 1546080, DOI 10.1215/S0012-7094-38-00451-X
  • G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
  • David Jagerman, Information theory and approximation of bandlimited functions, Bell System Tech. J. 49 (1970), 1911–1941. MR 320600, DOI 10.1002/j.1538-7305.1970.tb04295.x
  • A. Kolmogorov, On inequalities between the upper bounds of successive derivatives of an arbitrary function on an infinite interval, Učen. Zap. Moskov. Gos. Univ. Matematika 30 (1939), 3-16; English transl., Amer. Math. Soc. Transl. (1) 2 (1962), 233-243. MR 1, 298, 400; 11, 86.
  • Henry P. Kramer, The digital form of operators on band-limited functions, J. Math. Anal. Appl. 44 (1973), 275–287. MR 329744, DOI 10.1016/0022-247X(73)90059-0
  • Edmund Landau, Über einen Satz von Herrn Esclangon, Math. Ann. 102 (1930), no. 1, 177–188 (German). MR 1512573, DOI 10.1007/BF01782342
  • A. J. Macintyre, Laplace’s transformation and integral functions, Proc. London Math. Soc. (2) 45 (1938), 1-20.
  • Thomas J. Osler, A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval’s formula, SIAM J. Math. Anal. 3 (1972), 1–16. MR 323970, DOI 10.1137/0503001
  • G. Pólya, Sur certaines transformations fonctionnelles lineaires des fonctions analytiques, Math. Z. 29 (1929), 549-640.
  • H. R. Pitt, On the class of integro-differential equations, Proc. Cambridge Philos. Soc. 40 (1944), 199–211. MR 12197, DOI 10.1017/S030500410001834X
  • Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
  • I. J. Schoenberg, The elementary cases of Landau’s problem of inequalities between derivatives, Amer. Math. Monthly 80 (1973), 121–158. MR 315070, DOI 10.2307/2318373
  • P. C. Sikkema, Differential operators and differential equations of infinite order with constant coefficients. Researches in connection with integral functions of finite order, P. Noordhoff N. V., Groningen-Djakarta, 1953. MR 0060082
  • J. Tagamlitzki, Funktionen, die auf der reellen achse gewissen Ungleichungen genügen, Annuaire [Godišnik] Univ. Sofia. Fac. Phys.-Math. Livre 1. 42 (1946), 239–256 (Bulgarian, with German summary). MR 0021042
  • J. M. Whittaker, Interpolator function theory, Cambridge Univ. Press, London, 1935.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A64, 34A20
  • Retrieve articles in all journals with MSC: 30A64, 34A20
Additional Information
  • © Copyright 1976 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 216 (1976), 145-187
  • MSC: Primary 30A64; Secondary 34A20
  • DOI: https://doi.org/10.1090/S0002-9947-1976-0387587-3
  • MathSciNet review: 0387587