Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the topological extension to the boundary of biholomorphic maps in $ C\sp{n}$


Author: R. Michael Range
Journal: Trans. Amer. Math. Soc. 216 (1976), 203-216
MSC: Primary 32H99
DOI: https://doi.org/10.1090/S0002-9947-1976-0387665-9
MathSciNet review: 0387665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F:{D_1} \to {D_2}$ be a biholomorphic map between bounded domains in $ {{\mathbf{C}}^n}$ with piecewise smooth strictly pseudoconvex boundaries. It is shown that F is Hölder continuous of some positive order, and hence F extends to a homeomorphism of the closures of the domains. This generalizes recent results of G. M. Henkin and N. Vormoor for domains with smooth strictly pseudoconvex boundary.


References [Enhancements On Off] (What's this?)

  • [1] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, 2nd rev. ed., Die Grundlehren der math. Wissenschaften, Band 77, Springer-Verlag, Berlin, 1962. MR 26 #5137. MR 0147622 (26:5137)
  • [2] H. Behnke and P. Thullen, Theorie der Funktionen mehrer komplexer Veränderlichen, 2nd rev. ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 51, Springer-Verlag, Berlin and New York, 1970. MR 42 #6274. MR 0271391 (42:6274)
  • [3] K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), 9-36. MR 41 #7149. MR 0262543 (41:7149)
  • [4] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. MR 0350069 (50:2562)
  • [5] G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 #308. MR 0247039 (40:308)
  • [6] I. Graham, Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in $ {{\mathbf{C}}^n}$ with smooth boundary, Bull. Amer. Math. Soc. 79 (1973), 749-751. MR 48 #2428. MR 0324076 (48:2428)
  • [7] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $ {{\mathbf{C}}^n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240. MR 0372252 (51:8468)
  • [8] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [9] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains, and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR 7 (1969), 597-616. MR 40 #2902. MR 0249660 (40:2902)
  • [10] -, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk SSSR 210 (1973), 1026-1029 = Soviet Math. Dokl. 14 (1973), 858-862. MR 48 #6467. MR 0328125 (48:6467)
  • [11] L. Hörmander, $ {L^2}$ estimates and existence theorems for the $ \bar \partial $ operator, Acta Math. 113 (1965), 89-152. MR 31 #3691. MR 0179443 (31:3691)
  • [12] J. J. Kohn, Boundary behavior of $ \bar \partial $ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523-542. MR 48 #727. MR 0322365 (48:727)
  • [13] E. Ramirez de Arellano, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/70), 172-187. MR 42 #4767. MR 0269874 (42:4767)
  • [14] R. M. Range and Y. T. Siu, Uniform estimates for the $ \bar \partial $-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. MR 0338450 (49:3214)
  • [15] H.-J. Reiffen, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. MR 33 #4325. MR 0196133 (33:4325)
  • [16] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng pseudokonvexen Gebieten im $ {{\mathbf{C}}^n}$ mit $ {C^\infty }$-Rand, Math. Ann. 204 (1973), 239-261. MR 0367298 (51:3540)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H99

Retrieve articles in all journals with MSC: 32H99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0387665-9
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society