Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An order topology in ordered topological vector spaces


Author: Lyne H. Carter
Journal: Trans. Amer. Math. Soc. 216 (1976), 131-144
MSC: Primary 46A40
DOI: https://doi.org/10.1090/S0002-9947-1976-0390704-2
MathSciNet review: 0390704
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An order topology $ \Omega $ that can be defined on any partially-ordered space has as its closed sets those that contain the (o)-limits of all their (o)-convergent nets. In this paper we study the situation in which a topological vector space with a Schauder basis is ordered by the basis cone. In a Fréchet space $ (E,\tau )$, we obtain necessary and sufficient conditions both for $ \tau \subset \Omega $ and for $ \tau = \Omega $. Characterizations of (o)- and $ \Omega $-convergence and of $ \Omega $-closed sets are obtained. The equality of the order topology with the strong topology in certain dual Banach spaces is related to weak sequential completeness through the concept of a shrinking basis.


References [Enhancements On Off] (What's this?)

  • [1] Ja. M. Ceĭtlin, Unconditional bases and semiorderedness, Izv. Vysš. Učebn. Zaved. Matematika 1966, no. 2 (51), 98-104; English transl., Amer. Math. Soc. Transl. (2) 90 (1970), 17-25. MR 33 #6362; 41 #8191.
  • [2] M. M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, Berlin and New York, 1973. MR 0344849 (49:9588)
  • [3] J. Grosberg and M. Kreĭn, Sur la decomposition des fonctionelles en composantes positives, C. R. (Dokl.) Acad. Sci. URSS 25 (1939), 723-726. MR 0002019 (1:338a)
  • [4] J. T. Hofler, Continuous lattice ordering by Schauder basis cones, Proc. Amer. Math. Soc. 30 (1971), 527-532. MR 0415264 (54:3355)
  • [5] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527. MR 12, 616. MR 0039915 (12:616b)
  • [6] G. J. O. Jameson, Ordered linear spaces, Lecture Notes in Math., vol. 141, Springer-Verlag, Berlin and New York, 1970. MR 0438077 (55:10996)
  • [7] L. V. Kantorovič, B. Z. Vulih and A. G. Pinsker, Partially ordered groups and partially ordered linear spaces, Uspehi Mat. Nauk 6 (1951), no. 3 (43), 31-98; English transl., Amer. Math. Soc. Transl. (2) 27 (1963), 51-124. MR 13, 361; 27 #1517. MR 0151532 (27:1517)
  • [8] S. Karlin, Bases in Banach spaces, Duke Math. J. 15 (1948), 971-985. MR 10, 548. MR 0029103 (10:548c)
  • [9] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. I, North-Holland, Amsterdam, 1971.
  • [10] C. W. McArthur, Convergence of monotone nets in ordered topological vector spaces, Studia Math. 34 (1970), 1-16. MR 0259559 (41:4197)
  • [11] C. W. McArthur, Unpublished lecture notes from Advanced Topics in Functional Analysis, Florida State University, 1972-73.
  • [12] I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. No. 24 (1957). MR 20 #1193. MR 0094681 (20:1193)
  • [13] A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York and London, 1967. MR 37 #3315. MR 0227731 (37:3315)
  • [14] A. V. Potepun, Generalized regularity of K-lineals, and the properties of the order topology, Dokl. Akad. Nauk SSSR 207 (1972), 541-543 = Soviet Math. Dokl. 13 (1972), 1573-1576. MR 47 #3943. MR 0315394 (47:3943)
  • [15] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [16] I. Singer, Bases in Banach spaces. I, Die Grundlehren der math. Wissenschaften, Band 154, Springer-Verlag, Berlin and New York, 1970. MR 45 #7451. MR 0298399 (45:7451)
  • [17] B. Z. Vulih, Introduction to the theory of partially ordered spaces, Fizmatgiz, Moscow, 1961; English transl., Noordhoff, Groningen, 1967. MR 24 #A3494; 37 #121. MR 0224522 (37:121)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A40

Retrieve articles in all journals with MSC: 46A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0390704-2
Keywords: (o)-convergence, Schauder basis, unconditional basis, shrinking basis, basis cone, normal cone, barrelled space, Fréchet space, Banach space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society