FINITE GROUPS AS ISOMETRY GROUPS

By

D. ASIMOV

ABSTRACT. We show that given any finite group G of cardinality $k + 1$, there is a Riemannian sphere S^{k-1} (imbeddable isometrically as a hypersurface in R^k) such that its full isometry group is isomorphic to G. We also show the existence of a finite metric space of cardinality $k(k + 1)$ whose full isometry group is isomorphic to G.

Let G be a finite group of $k + 1$ elements $\{1, g_1, \ldots, g_k\}$.

THEOREM. There exists a Riemannian metric on the sphere S^{k-1} such that the isometry group is isomorphic to G.

Proof. Label the $k + 1$ vertices of a regular k-simplex Δ_k by the names $1, g_1, \ldots, g_k$ of the elements of G. Assume Δ_k to be inscribed in a standard S^{k-1} sitting in R^k as usual. $T_y(S^{k-1})$ denotes the tangent space at y.

Now in $T_1(S^{k-1})$ pick an orthonormal frame (v_1, \ldots, v_{k-1}). Pick $\epsilon > 0$ small and let

$$w_i = \epsilon(1 + (i - 1)/4k^2)v_i, \quad 1 \leq i \leq k - 1.$$

Let

$$Q = \{\exp_1(w_i) \mid 1 \leq i \leq k - 1\} \cup \{\exp_1(0)\} \cup \{w_1/10\}.$$

\exp_1 is the exponential map $\exp_1 : T_1(S^{k-1}) \rightarrow S^{k-1}$.

Think of G as acting on S^{k-1} by the isometries induced from the permutation representation on the vertices of Δ_k. Let $X = \{gQ \mid g \in G\}$.

PROPOSITION. With the induced metric from R^k, the metric space X has its group of isometries isomorphic to G.

Proof. Clearly G acts as a group of isometries of X, since $X = \{h(gQ) \mid g \in G\} = \{hgQ \mid g \in G\} = \{gQ \mid g \in G\} = X$.

Conversely, any isometry of X must take the point 1 to some point g, since the points g are characterized by being the only points in X having their
two nearest neighbors at distance of $\epsilon/10$ and ϵ respectively. Once we know that $1 \mapsto g$, the configuration gQ determines the image of the frame (w_1, \ldots, w_{k-1}) at 1, and hence determines the unique isometry of X defined by the element $g \in G$. Of course ϵ must be chosen small enough so that the configurations $gQ,g \in G$ do not "interfere" with one another.

Now we add bumps to S^{k-1} at the points of X using scalar multiplication in \mathbb{R}^k. Let

$$\delta = (1/3)\min\{\text{dist}_{S^{k-1}}(x, y) | x, y \in X\}.$$

Let $f: [0, \delta] \rightarrow \mathbb{R}$ be a smooth function satisfying

(a) $f(s) = 100, 0 \leq s \leq \delta/2$,
(b) $f(\delta) = 1; f^{(k)}(\delta) = 0, k = 1, 2, \ldots$,
(c) $f^{(k)}(\delta/2) = 0, k = 1, 2, \ldots$ and
(d) $f'(s) < 0$ if $\delta/2 < s < \delta$.

Now for each point $x \in X$ we remove the disk $\exp_x(D_{\delta})$ from S^{k-1} and replace it by the point set $B_x = \{f(|v|)\exp_x(v) | v \in D_{\delta}\}$, where D_{δ} is the (δ)-disk about the origin of $T_x(S^{k-1})$. Clearly the set $S^{k-1} - \bigcup_{x \in X} \exp_x(D_{\delta}) \cup \bigcup_{x \in X} B_x$ is a smooth S^{k-1} imbedded in \mathbb{R}^k. We give it the induced Riemannian metric from \mathbb{R}^k and denote it by M.

Claim: $\text{Isom}(M) \cong G$.

Proof. First we notice that the points of $100 \cdot X \subset M$ must be taken to themselves by any isometry I of M, by the choice of the function f. Clearly the same arguments above for X hold for $100 \cdot X$, hence the isometry $I: M \rightarrow M$ restricted to $100 \cdot X$ comes from the action of G.

Let us now consider the "bump" B_1 above the point 1. Let us define for $r \geq 0$, $S_r = \{f(r) \cdot \exp_u(v) | |u| = r, v \in T_u(S^{k-1})\}$. In other words, S_r is the $(k-2)$-sphere of B_1 lying above the $(k-2)$-sphere about 1 of radius r, for $0 < r \leq \delta$, and for $r = 0$ we set $S_0 = p$, the peak point of B_1.

Now it is easy to show that the orthogonal trajectories of the S_r's are geodesics of M and as such must be preserved under any isometry taking p to p.

Thus any isometry I of M which takes p to p (and which must thus leave all points of $100 \cdot X$ fixed) must be a "rotation" on all of B_1, determined by $I | \partial B_1$, carrying each S_r into itself by the "same" element of $O(k-2)$. Similarly, this I must rotate each bump $B_x, x \in X$.

Also this rotation must extend past the boundary of the bumps for some ways, so we can easily extend $I | (M - \bigcup_x B_x)$ to an isometry \widetilde{I} of S^{k-1} to itself, by simply "coning" I over $\exp_x(D_{\delta}), x \in X$. Clearly we will have $\widetilde{I}(x) = x$ for $x \in X$, and it follows easily that $\widetilde{I}: S^{k-1} \rightarrow S^{k-1}$ is the identity. Hence $I: M \rightarrow M$ must have been the identity.
Now it is clear that for each \(g \in G \) there is one isometry of \(M \) determined by the action of \(g \) on \(S^{k-1} \), extended to \(\mathbb{R}^k \), restricted to \(M \). Now if there is another isometry \(I : M \to M \) such that \(I \cdot X = g \cdot X \), then \(I \circ g^{-1} : M \to M \) must leave points of \(X \) fixed, so by the above discussion must be the identity. This establishes \(\text{Isom}(M) \approx G \).

Corollary. Any finite group \(G \) is isomorphic to the (full) isometry group of a finite subset \(X_G \) of euclidean space. If \(\text{card}(G) = k \) then the \(X_G \) can be found with \(\text{card}(X_G) = k^2 - k \) in euclidean space of dimension \(k - 1 \).

Proof. Simply take \(X_G = X \) in the proof of the Theorem, and count (noting that we initially took \(\text{card}(G) = k + 1 \)).

Remark. Further considerations can very likely reduce the necessary cardinality for \(X_G \) to \(k(k - 3) \). The various numbers
\[
d = \min\{\text{card}(X) | G \approx \text{Isom}(X)\}
\]
and
\[
e = \min\{N | G \text{ has a faithful representation into } O(N)\}
\]
seem to be interesting invariants of a finite group \(G \).

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Current address: School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540