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CYLINDRIC ALGEBRAS OF FIRST-ORDER LANGUAGES

BY

DALE MYERS(!)

ABSTRACT.  We show when two countable first-order languages have

isomorphic cylindric algebras.

Introduction. The cylindric algebra of a language is the co-dimensional cylin-

dric algebra of formulas of the language modulo logical equivalence. We classify

first-order languages according to the isomorphism types of their cylindric alge-

bras.  For two languages involving only predicate symbols, their cylindric algebras

are isomorphic iff for every nEu, both languages have the same number of

predicate symbols with at least n places. This solves the classification problem for

free co-dimensional locally-finite cylindric algebras [4, Problem 2.8, p. 463] since

these algebras are exactly the cylindric algebras of languages involving only

predicate symbols.

For any first-order theory, the topological space of its models with ECA classes

(classes which consist of all models of some theory) as closed sets is a natural dual

for the Lindenbaum-Tarski algebra of the theory.  By enriching the class of models

to the concrete category of models and isomorphisms and replacing the topology

with the ultraproduct operations, we obtain a natural model-theoretic dual for the

cylindric algebra of formulas of the theory. This duality is used in demonstrating

that various properties of languages are invariant under cylindric isomorphism.

The basic tool used in isomorphism construction is a decomposition version

of the Cantor back-and-forth construction [7].

Notation. All languages, theories and sets of symbols will be countable.  All

theories will be first-order theories with equality.  "Symbol" will mean nonlogical

symbol. The type of an «-ary predicate symbol is n; that of an w-ary operation

symbol is n + fa. Propositional letters are regarded as 0-ary predicate symbols and

constants as 0-ary operation symbols.  Let lAu = {XA, IVi, 2lA, . . .}. The {full)

type sequence of a language is the sequence <a0, aVl, a x, ax Vl,. . . > where a¡ is

the number (possibly co) of symbols of the language of type i. The reduced type

sequence is the sequence (b0, bx/i, bx, bx I/2, . . . > where b¡ is co if there are
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infinitely many symbols of type > i and, if not, the number of symbols of type i.

The uriboundedness of the language is the largest i, if any, such that b¡ = to; it is

undefined if no b¡ is co and co if every b¡ is to.

We shall occasionally wish to consider symbols other than equality as quasi-

logical built-in symbols.  Let S be a fixed set of such symbols, let S be a set of

axioms on S and let s = (S, 2>. For any set R of symbols, let LS(R) he the

language whose set of symbols is S U R and let Ths(R) he the theory whose lan-

guage is LS(R) and whose axioms are 2. We write F(R) and Th(R) for LS(R) and

Ths(R) when s — (0, 0>.  Suppose F is a theory whose set of symbols includes

S. If R ' is a subset of F's set of symbols, let F| R' be the restriction of T to the

sentences of LS(R').  If a is a sentence of F's language, let To be the theory ob-

tained by adding a to the axioms of T.  Let cyls(T) be the cyUndric algebra of

formula's of F's language modulo equivalence with respect to T plus constants

as for S E S where as is Sxx ... xn if S is an «-ary predicate symbol and Sxx

" ' x„ = xn + j if S is an n-ary operation symbol.  Let =s he the relation on theo-

ries such that T=ST' iff cyls(T) ss cyl/F'). We write s for a¡4 when s =

(0) 0>. If F s T', T and T' ate cylindrically isomorphic. Being cyÜndricaUy iso-

morphic is equivalent to being bilateraUy interpretable [6], being synonymous [1]

or, if there are no constant or operation symbols, being related [8].

Cylindric duality. In this section and the next, the S and 2 of the previous

section wiU be empty.  Let Cyl be the category consisting of the algebras cyl(F),

T a theory, and cylindric homomorphisms.  Given a theory T, an ultraproduct

operation on the class of its models is one which, for some index set / and ultra-

filter D, sends an Z-indexed family (21,-: i G I) of models of T to the ultraproduct

nD2I;.  Let mod-ult(F) be the concrete category of models of F and isomorphisms

operated on by the ultraproduct operations. Let Mod-Ult be the category whose

objects are the categories mod-ult(F), T a theory, and whose morphisms are func-

tors «: mod-ult(F) —* mod-ult (T1) such that « o (the forgetful functor) = the

identity and « commutes with aU ultraproduct operations.

Theorem 1 (Duality theorem). 77ze categories Cyl and Mod-Ult are dual.

Proof.   For any theory T, let cyl(F)* = mod-ult(F). Let Fand T' he

theories and suppose for convenience that their symbols are the binary predicates

R and S respectively.  For any /: cyl(F') —> cyl(F), let /*: mod-ult(F) —>■

mod-ult(F') be the unique concrete functor such that for any model 21 =

{X, Z?a > of T, f*((X, Rü)) = {X, (¿>a> where <p(jr, v) = f(Sxy) and ^ is the

interpretation of y in 21. The structure {X, ip8*) is a model of T' since if T' |=

a then, since /is a cyUndric homomorphism,  T \= f(o) and hence (X, Z?**> \=

f(o) and hence, since f(o) is the result of replacing S with i¿> in a, (X, i/*a> |= o.

Clearly,/* preserves ultraproducts.
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Easily, if i is an identity map of Cyl, then i * is an identity map of Mod-

Ult and if / and g are maps of Cyl, then (/ o g)* = g* o f*. Hence ( )* is a

contravariant functor from Cyl to Mod-Ult.

For any theory riet mod-ult(T')* = cyl(T'). Again suppose Tand T' are

theories whose symbols are the binary predicates R and S respectively. Let h:

mod-ult(r) —> mod-ult(r') be a functor in Mod-Ult. Then the map Uh defined

by t/ft(2I) = (X, R®, Sft(a) > for 21 = (X, R a> commutes with the ultraproduct

operations and preserves isomorphisms. Hence by Kochen [6, Theorem 12.1] and

Shelah [9] (the latter shows that the ultralimit condition of the former may be

omitted) there is a formula ip(x, y) involving only R such that for any 21 =

{X, Rn >, <¿>a = SH^. Clearly this ip(x, y) is unique modulo equivalence with

repsect to T. Let /: cyl(L({S})) —► cyl(r) be the unique homomorphism such

that f{Sxy) = ip(x, y) and let p: cyl(Z,({S})) —> cyi(T') be the homomorphism

such that p(Sxy) = Sxy. For any sentence a of L({S}), if T' \= o and 21 n T

then h(n) 1= T' and so /z(2I) 1= o and so 21 \=f(o). Hence T' \= o implies T t=

f(o) and so /factors through p and, since p is onto, the factorization is unique. Let

h* he the unique homomorphism such that /= h* o p. Easily, for any identity map

i of Mod-Ult, i * is an identity map of Cyl and for any h and g, (h o g)* =g*oh*.

Finally it is clear that cyl(T)** = cyl(T) and mod-ult(7:)** = mod-ult(r). It

is also straightforward to verify that for any map h in Mod-Ult, h** = h. For

any map/in Cyl,/** =/follows from the uniqueness modulo equivalence with

respect to T of the y(x, y) in the definition above.

Corollary 2.  For any theories Tand 7", if cy\(T) = cyl(r'), then

(1) the number of models of T with a given universe equals the number of

models of T' with that universe,

(2) the number of nonisomorphic models of T of a given cardinality equals

the number of nonisomorphic models of T' ofthat cardinality, and

(3) every automorphism group of a model of T is also (identical with not

just isomorphic to) an automorphism group of a model of T' and vice versa.

Our model-theoretic dual should be compared to the sheaf-theoretic duals of

S. D. Comer [2] which are part model-theoretic (the base space is the topological

space of models) and part algebraic (the stalks are cylindric algebras).

Invariants. An invariant of a language is a property of or a function on

languages such that languages with isomorphic cylindric algebras are the same with

respect to the property or are assigned the same value by the function.

Although the full type sequence is not an invariant, we have

Lemma 3.   The reduced type sequence is an invariant.

Proof.  The proof is basically the counting argument of Pigozzi in [4,
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Theorem 2.5.51]. We show that languages with different reduced type sequences

are not cylindricaUy isomorphic.  Let T and T' be the theories of languages L and

L' whose sets of symbols are R and R' and whose reduced type sequences are a =

<a0, a1/2, ax, . . .) and ß = {b0, bVl, bx, . . . >. If a ¥= ß, then, since they are re-

duced type sequences, one of a and ß must be smaller reverse lexicographicaUy. Sup-

pose for some i, ai > b{ and a¡ > b¡ for / > /'. Thus b¡ < co and so b¡ < co for / > i

and for some k > i, b¡ = 0 for / > k.  Suppose for reductio ad absurdum that

/: cyl(F) = cyl(F'). Let R0 be a subset of R consisting of b¡ + 1 symbols of

type i and b¡ symbols of type / for / G (i, k]. Then / maps cyl(F| R0) 1-1 into

cyl(F'| RÓ) for some finite R'0 E R' consisting of b\ symbols of type i for i E

[0, k] where b\ < b¡. Hence /*, the dual off defined in the Duality section, is a

universe preserving map from the structures of L(R'0) to those of ¿(R0). If 21 is a

structure of¿(R0) with finite universe and o a sentence of Cyl(F| R0) whose

model class is2t's isomorphism type, then 21 not in the image of/* implies/(a) =

0 which is impossible since/is 1-1. Hence/* maps the finite structures of L(R'0)

onto the finite structures of F(R0). Let x be a finite cardinal and let N0(x) and

N'0 (x) be the number of ¿(Restructures and ¿(Restructures, respectively, over

a given universe of cardinality x. Thus N0(x) <7V0(;c). For illustrative purposes,

suppose i E co and k E Ylu. Then

N0(x) = (2(*Vi+10c(xV/+v4(2(,c/+1))*,+ 1 • • ' (*(*fc~'/2))\      and

/v» =(2^0))ôo(x(^°))&;/2 . .. çt&hf'r ... (X-'V*.

Taking logarithms we have

log2N0(x) = (bt + l)x* + b^x'to^x + bt+xxi+1 + •••+ bkxk-vnog2x,

and

log2yvo (x) = b'0x° + b'1/2x°log2x + • • - + b'iX* + • • • + b'kxk-vnog2x.

Since b¡ + 1 > b\ and b- > b'■ for / G (í, k], a simple rate of growth argument

shows that log2NQ(x) > log2N^ (x) for sufficiently large x. But this contradicts

N0(x) <7V0(x). Hence T and T' ate not cylindricaUy isomorphic.

Lemma 4.   The existence of a constant is an invariant.

Proof.  Any structure of a language with a constant has a point which is

left fixed by aU automorphsims. Any language without a constant has a structure

with no such fixed point.  Hence no language with a constant is cyUndricaUy iso-

morphic to one without a constant.

Lemma 5.   The number of predicate symbols is an invariant.
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Proof. The number of isomorphism types of one element structures of a

language with m predicate symbols is 2m and, by Corollary 2, this number is an

invariant.

Lemma 6. The number of unary predicate symbols is an invariant for the

class of languages whose symbols are of type 0, 1 or VÁ.

Proof.   Suppose L and L' are languages all of whose symbols are of type 0,

1 or VA; suppose L has k unary predicate symbols, k Eu U {co}; and suppose

L' has k' unary predicate symbols, k' < k.   By interpreting the function symbols

to be the identity and by choosing appropriate interpretations for the unary predi-

cates, we can construct an Z,-structure with an infinite universe X which can be

partitioned into 2k infinite orbits such that the restriction of the automorphism

group of the structure to an orbit is the full symmetric group of that orbit.  In

any L '-structure over X with the same automorphism group all the function sym-

bols must be interpreted as identities since if f(x) ixwe can find an automor-

phism which moves f(x) but not x, an impossibility.   But any such ¿'-structure

can be partitioned into at most 2k orbits. Hence k' < k is impossible.

Isomorphism construction.  Given an index set S, let C be the category of

countable co-dimensional locally-finite cylindric algebras with an S-indexed list of

constants and homomorphisms which preserve the constants.  The minimal sub-

algebra of an algebra in C is the subalgebra generated by the constants.  Let ©:

C x C —► C be the cartesian product functor and let ® : C x C —> C be the ten-

sor product functor.  For objects 21 and 8 of C, 21 ® 8 is the categorical direct

sum of 21 and 8 in C. If there are no additional constants, 21 ® 8 is the free

product of the cylindric algebras 21 and 8.  If there are additional constants and

21 and 8 have the same minimal algebra E, 21 ® 8 is the free product of 21 and S

amalgamated over £ with constants interpreted as in £. Let 4> be the class of all

polynomials in 0 and 9 with coefficients in C. This is the smallest class of func-

tors closed under composition and containing ®, ©, the identity and projection

functors, and all zero-ary functors whose unique value is in C.

If ® is the minimal subalgebra of 21, 3 —► 21 will always be the canonical

injection. If maps 21 j —* Sj, . . . , 2I„ —* 8„ have been given, ip(2I1,. . . , 2I„)

-* *(8i, • • • , 8„) will always be the map <pi%x -> 8j, . . . , 2I„ —► B„).

A symmetric binary relation Q on the algebras of C is ^-decomposable iff

for any algebras 21 and 8 of C, (D1)2IQ 8 implies 21 and 8 have isomorphic mini-

mal subalgebras and (D2)2IQ8 and (S —► 21 a monomorphism from a finitely gen-

erated algebra of C implies there is a functor y(Xx,..., Xn) in <ï>, sequences 2Î =

<?Ij, . . . , 2I„ > and 8 = <8t, . . . , 8„ > of algebras in C and isomorphisms

*(«,, . . . , 2I„) = 21 and ̂ (Bj, . . ., 8„) = 8 such that 2It Q8P . . . , 2i„Q8„,

and S —> 21 factors through <p{\.2)„) —► <p(Vx.?I„) Si ?I where 2).

is the minimal subalgebra of 21,-.
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Lemma 7.   If Q is a ^-decomposable relation on C and 21 and 8 algebras

ofC, then 21Q 8 implies 21 s 8.

Proof.  This lemma is a special case of Theorems 2 and 3 of [7].

Let S be the set of quasi-logical symbols. For any «-place predicate symbol

R, let "Z? is trivial" be the sentence (S/xx • • • xn)( ~]Rxx • • • xn) and let "Z?

is nontrivial" be its negation.  For any «-place operation symbol R, « > 1, let

"R is trivial" be (\/xx * • • xn) (Rxx • • • xn = xx). If R is a constant symbol

and a is a given constant of S, let "R is trivial" be (R = a). In any case, for any

theory T whose symbols include R and those of S, R is definable from S in F

("R is trivial").

The pecuUar form of the next theorem is motivated by subsequent applica-

tions. Note that for any theory whose set of symbols includes S,T\0 = T\S.

Theorem 8. (Construction theorem). Let S be a fixed set of symbols

let 2 be a set of axioms of S, and let s = <S, 2>. Suppose that Q is a sym-

metric relation on theories and that for any theories Tand T' satisfying TQT',

there are sets of symbols R and R'which include S and for which T = Ths(R)

and T' = Ths(R') and the following hold:

(Cl). T\0=T'\0.
(C2). Rx.Rn E R implies there are Rx, . . . , Rn ER and

R[, ...,R'nQR' such that R, E R¡, R¡ n R;. = R'. n R'. = S for ii-j, R =

RjU«-« UR„,R' = R; U---UR;, and FI RfQF'lR;.

(C3). F a finite subset of R and F' a finite subset of R' implies

F|(R~F)QF|(R'~F').
(C4). R and R' have no constants if S has none.

(C5). If R is an n-ary predicate (operation) symbol of R such that no sym-

bol of the same type occurs in R', then there are symbols Rx, . . . , Rm of R of

types which do occur in R' and a sentence denoted by "Rx, . . . , Rm codes an

n-ary relation (operation)" in LS({RX,. . . , Rm}) such that T\ {R} =s

T\{RX,. . . ,Rm}  ("Z?j, . . . ,Rm codes an n-ary relation (operation)").

Then for any T and T', TQT' implies T % T'.

Proof.  Let S, 2, s, and Q be as hypothesized. Let C be the category

whose objects are countable co-dimensional locaUy-finite cyUndric algebras with

an S-indexed Ust of constants and whose maps are homomorphisms. Note that if

Rx and R2 are sets of symbols such that Rx (1 R2 E S, then cyls(Ths(Rx U R2))

s cyls(FAi(R1)) ® cyli(F«J(R2)). If Fis a theory set of symbols includes S and

if ox and o2 are sentences of F's language such that ox = ~l o2, then cyls(F) =

cyl^Fa^ecyl^F^).

Let Q also denote the symmetric relation on algebras of C defined by 21Q 8
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iff for some theories T and T' 21 = cyls(T), 8 = cyls(T'), and TQ T'. We show

that Q is «^-decomposable.

Condition (Dl) is satisfied since the minimal subalgebras of related algebras

cyls(7;) and cyls(T') are cyls(T\0) and cyl/r'10) respectively which, by (Cl),

are the same.

To verify (D2), suppose 21Q 8 and £—► 21 is a monomorphism from a

finitely generated algebra. Then there are theories T and T' such that 21 =

cyls(T), 8= cyl^r'), and TQT'. By the hypotheses concerning Q, there are sets

of symbols R and R' such that T = Ths(R) and T' = Ths(R').  Since £ is finitely

generated, there is a finite set F E R such that S —► 21 factors through the in-

jection cyL/riF) -* cy\s(T) = 21.

Case (i).  Suppose F = {R} for some symbol R E R whose type occurs in

R'.  Let R' he a symbol of R' of the same type as R. Let y(X) = cyls(r| {JR})

® X, let a, = cyL/TIR ~ {R}), and let 8! = cy\s(T'\R' ~ {R'}). Then ̂ 2^)

= cyls(T\{R}) ® cy\s(T\ R ~ {R}) S£ cyls(T) = 21; ̂ (Bj) = cyls(T\{R}) ®

cyl/r'IR' ~ {R'}) =, since T\{R} = Ths({R}) -  Ths({R'}) = T'\{R'},

cyls(T'\{R'}) ® cyls(T'\R' ~ {R1}) = cyls(T') = 8; 21, = cyls(71 R ~ {Z?}) Q

cyls(T'\ R' ~ {Z?'}) = Bj by (C3); and, noting that the minimal subalgebra 3), of

ÎI, is cyls(T|0), cyls(T\ {R}) -+ cyl^T) = 21 factors through ̂ (St) -+ ^(ax) =

21, i.e., through v(§x) = cyls(r|{Z?}) ®   cyls(T\0) ->■ çyL/T|{/?}) ®

cyls(r|R~{ZÎ})scyls(r) = 2I.
Case (ii).  Suppose F = {R} for some rc-ary predicate (operation) symbol

R ER whose type does not occur in R'. By (C5), there are symbols Rx, . . . ,

Rm in R and symbols R\,. . ., R'm in R' of corresponding type and a sentence

"Z?j, . . . , Rm codes an n-ary relation (operation)" such that T\{R} =s

T\ {R j, . . . , Rm }   ("Z? j, . . . , Rm codes an n-ary relation (operation)") via some

isomorphism n.  Let "Z? 1, . . . , Rm codes a trivial relation (operation)" be the

value n assigns to "R is trivial". Let ox = "Z? is nontrivial", o2 = "R is trivial"

A "Rx,.. ., Rm does not code any n-ary relation (operation)", and o3 = "R is

trivial" A "R1, . . . ,Rm codes an n-ary relation (operation)" and let o'x =

'jRj, . . . , R'm codes an n-ary relation (operation)" A "R'x, . . . , R'm does not

code a trivial relation (operation)", o2 = "R'x.R'm does not code an «-ary

relation (operation)", and o'3 = "R'x, . . . , R'm codes a trivial relation (operation)".

Then ox,o2, and a3 are pairwise inconsistent and mutually exhaustive as are o\,

a;,ando3. Also T\ {R}{ox)*s r'l{Z?;,... ,R'm}{o'x);T\{R,Rx.Rm}{o2)

=5 T'\{R\.R'm}(o'2); To3 =s,    this requires a second glance,

71 (R ~ {Rx, . . . ,Rm}); and T'o'3 -  T'\(R' ~ {R\, . . . ,R'm}). Let

V(XX, X2, X3) = (cyls(T\ {R}ox)®Xx)

e(cyls(7ï{Z?, Rx,.. .,Rm}o2)®X2)®X3,
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let 2Í, = cyl/FIR ~ {R}), 2I2 = cyl^FIR ~{R,Rx,.. .,Rm}),tl3 =

cy\s(T\R~{Rx.Z?m}),andlet

Bi = B2 = S3 = cyl^riR'- {R'x,.. .,R'n}).

Then

¥>($!„H2-«13)= (çyl.mWa,) ® cyls(F|R ~ {R}))

®{cyls(T\{R,Rx,...,Rm}o2)

®cy\s{T\R~{R,Rx,...,Rm}))

®cyls{T\R~{Rx,...,Rm})

tt cyL/Fo-j) © cyls(Fa2) © cyls(Fa3) = cyls(T) = 21.

SimUarly,^(81,82,B3) = 8. By (C3), 21, Qr)x,1l2Q%2, and 2I3Q83.  Fi-

nally, the minimal subalgebras of21 x, 212, and2I3 are 5)j = S)2 = §3 = cyl/Flia),

and cyls(r|{ZÎ}) —> cyls(T) = 21 factors through

1PO1.S2.S3)—-ASIi.«2. «í3) = a

which is

(cyyriWa^Scyl/r^))

e(çyl,(r|{R, Z?!, . . . ,Z?m}a2) ® cyls(F|0))

© cyls(F|0) -»• cyl/Fio!) ©cyls(r|a2) ©cyls(r|a3) a 21

since if ox holds Z? is in {R}, if a2 holds Z? is in {R, Rx, . . . , Rm}, and if o3

holds R is trivial and hence definable from S .

Case (üi).  Suppose V = {Rx, . . . ,Rn}. By (C2) there are Rx, . . . , R„ E

R and R'x, ...,R'nER' such that R¡ E R., R¡ n R,- = R,' nR). = S for i #/,

R = Rj U • • • U Rn, R' = R; U - • • U r;, and FIR^T'lR)-  Let«, =

cyls(F| R,.) and 8f = cyls(F' I R\). Then 2If Q Bf. By Cases (i) and (ü), there are

14 G $, sequences % = <2l/, 21 f,. .. > and 8,- = <8/, 8?, - . - >, and isomor-

phisms ̂(Ui) Sí 21,- and <fi((Ít) a Bf such that «{QB{ and cyls(T\{R¡}) ->

cyL/FIR,.) =21,- factors through tf.{%.) —> ̂.(2T,) = ÎI,- where If is the minimal

subalgebra sequence of 21,-. Let y be ^ ® <¿>2 ® • • • ® yn, and let 21 = 21, '"~N

g2 ^-v   ... ^-- 2l„ and B = Bx "-*• 82 ^ • • • "-* 8„ where <^ is con-

catenation. Then <p(U) = ^(H,) ® • • • ® <¿>„(2Í„) = 21, ® • • • ® 2I„ = 21 and

Ukewise <p(B) = B. Also ÏV. QBJ for each 2K and 8( of 2Ï and 8. FinaUy,

cyls(T\{Rx, ...,Rn})—* cyls(T) = 21 factors through

cyls(F|{Z?1})®...®cyli(r|{Z?„})

-> cyl,(riR,) ® • • • ® cyls(T\Rn) = cyl/F) = 21
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which factors through v'(S) —* <¿>(2I) — 21, i.e., through

<pCH) - ¥>(§i) ® ' ' ' ® V„(f„) -> Viiäj) ® • • • ® <p„(2l„)

== 2Ij ®--- ®2I„ SiS.

Hence Q is ^-decomposable and by the preceding lemma TQT ' implies

T~sr.

Basic isomorphisms.

Lemma 9.   For any sets R and R' of symbols with no constants, if there

are arbitrarily large integers such that both R and R' have predicate symbols of

that type or if R and R' have the same unboundedness, the unboundedness is an

integer, and no symbols of R or R' have type larger than the unboundedness;

then Th(R) s Th(R').

Proof.   Let Q be the relation such that TQT' iff T = Th(R) and T' =

Th(R') for some R and R' satisfying the hypotheses of the lemma. Suppose T =

Th(R) and T' = Th(R') and TQT'. Then conditions (C1)-(C4) of the Construc-

tion theorem hold.  To show (C5), suppose R E R is a symbol of a type which

does not occur in R'. Then the hypotheses imply there is a predicate symbol Z?0

E R of a type m which is larger than that of R and which does occur in R'.

Case (i). R is an n-ary predicate symbol.  Let "Z?0 codes an n-ary relation"

be the sentence

(Vx, • • ' xn) (V*„+1 • * ' xmx'n + x •■■x'n)

(Rxx • • • xnxn + x •••*„, *=*Rxx • • • xnx'n + x • • • x'm).

Then T\{R} = T\ {R0} ("R0 codes an n-ary relation").

Case (ii). R is an n-ary operation symbol.  Let "R0 codes an n-ary oper-

ation" be the sentence

(Vxx •~x„)i3y)iVxn+x "-xm){Rxx • •• xnxH+x--'xm ++xn+x =y).

Then T\{R} = T\ {R0 }  ("Z?0 codes an n-ary operation").

Let 3 > 2 he the sentence (3 xy) (x ^ y) and let "Z? is irreflexive" be

{Vx){~\Rx •" x).

Lemma 10.   For any sets R and R' of symbols with no constants, if there

are arbitrarily large half integers such that R and R' have operation symbols ofthat

type or if R and R' have the same unboundedness, the unboundedness is a half in-

teger >2Ví, and no symbols of R and R' have type larger than the unboundedness,

then Th(R) (3 > 2) == Tn(R') (3 > 2).

Proof.  Let s = <0, {3 > 2}). Let Q be the relation such that TQT' iff

T = Ths(R) and t = Ths(R') for some R and R' satisfying the hypotheses of
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the lemma.  Suppose T= Ths(R) and T' = Ths(R') and TQT'.  Then conditions

(C1)-(C4) of the Construction theorem hold. To show (C5) suppose R E R is a

symbol of a type which does not occur in R'. Then the hypotheses imply there

are operation symbols R0 and Rx in R of types m + 1A,m> 2, and k + rA, k >

2, which are larger than that of R and which do occur in R'.

Case (i). R is an n-ary operation symbol. Let "Z?0 codes an n-ary operation"

be the sentence

(V*i ' * ' xn) (Vx„ + i ' " * xmxn + l ' ' • xm)

(Rxx '"Xnxn+X ~>xm=Rxx '"Xnx'n+X '"x'm).

Then T\ {R} = T\ {R0} ("Z?0 codes an n-ary operation").

Case (ii). R is an n-ary predicate symbol, n > 1. Let "R0 codes an irre-

flexive n-ary relation" be "R0 codes an n-ary operation" A

(Vxx "-xnxn+x ~'Xm)

[Rxx ' • • xm = xx V    V    (xx = x2 = • • • = xt
\ Ki<n

*xi+lARxx •••xm =xi+xj,

and let "Rx codes a unary relation" be

(V*,) [(V*2 ■"xk(Rx1 ■■■xk=x1))y(\/x2 •••xfc(Rjc1 -•xk=x2))).

Then for any unary predicate symbol U£R,T\ {R} sí T\ {R} ("Z? is irreflex-

ive") "®"(r|(R ~ {R}) U {U }) s T\ {R0,RX} ("R0 codes an irreflexive n-

ary relation" A "Rx codes a unary relation").

Case (iii). R is a 0-ary predicate.  Let "R0 codes a 0-ary relation" be

(V*i - * * xm(Rxx •■'xm= xx)) V (VJfi * ' * xm(Rxx • • • xm = x2)). Then

71 {R} Si r| {R0}   ("Z?0 codes a 0-ary predicate").

Lemma 11.   For any sets of symbols R and R' with at least one constant

and infinitely many symbols of type > 1, if R and R' have exactly the same num-

ber of symbols of each type other than lA, then Th(R) ss Th(R').

Proof.  We may assume without loss of generality that R and R' contain

a common constant a. Let s = < {a}, 0 >. Let Q be the relation such that TQ T'

iff T = Ths(R) and T = Ths(R') for some R and R' satisfying the hypotheses of

the lemma and the assumption above.  Suppose T = Ths(R) and T' — Ths(R')

and TQT'. Then conditions (C1)-(C4) of the Construction theorem hold. To

show (C5) suppose R E R is a symbol of a type which does not occur in R'.

Then the hypotheses imply R is some constant b and there is a predicate or oper-

ation symbol R0 of R of a type m or m + y¿, m > 1, which also occurs in R'.

If R0 is a predicate symbol, let "R0 codes a constant" be (3 y) (V*i * • •

xm) (Rxx " • xm <=^>xx =y). If R0 is an operation symbol, let "Z?0 codes a
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constant" be (3 y) (\/xx • • • xm) (Rxx .■■xm^y). Then T\ {b} =s T\ {RQ}

("R0 codes a constant").

Lemma 12. For any set of symbols R and R' with at least one constant

and infinitely many symbols of type > 1, if R and R' have exactly the same num-

ber of symbols of each type other than 0 then Th(R) (3 > 2) = Th(R') (3 > 2).

Proof. We may assume that R and R' contain a common constant a. Let

s = < {a}, {3 > 2}). Let Q be the relation such that TQT' iff T= Ths(R) and

T' = Ths(R') fot some R and R' satisfying the hypotheses of the lemma and the

assumption above. Suppose T = Ths(R) and T' = Ths(R') and FQF'. Then

conditions (C1)-(C4) of the Construction theorem hold. To show (C5) suppose

R E R is a symbol of a type which does not occur in R'. Then the hypotheses

imply R is some 0-ary predicate F and there is a predicate or operation symbol

R0 of R of a type m or m + Yt, m > 1, which also occurs in R'.

If R0 is a predicate symbol, let "Z?0 codes a 0-ary predicate" be (\/xx • • •

xm iRoxi ' " ' xm)) V (V*i ••' xm (~\R0xx - - • xm)). lfRQ is an operation

symbol, let "Z?0 codes a 0-ary predicate" be (\/xx " ' Xm (R0xx • • • xm =xx))

V (V*i • ' * xm(R0xx '•■xm= a)). Then T\ {P} =s T\ {R0}  ("R0 codes a

0-ary predicate").

Lemma 13.   For any sets of symbols R and R' with at least one constant,

infinitely many symbols of type > 1, and infinitely many of type 0, // R and R'

have exactly the same number of symbols of each type other than 1, then

Th(R) (3 > 2) s F«(R') (3 > 2).

Proof.  We may assume without loss of generality that R and R' contain a

common constant a.  Let s = < {a}, {3 > 2}>.  Let Q be the relation such that

FQF' iff F = Ths(R) and Y = Ths(R') for some R and R' satisfying the

hypotheses of the lemma and the assumption above.   Suppose F = Ths(R) and

T' = Ths(R') and FQF'. Then conditions (C1)-(C4) of the Construction theo-

rem hold. To show (C5) suppose R E R is a symbol of a type which does not

occur in R'. Then the hypotheses imply R is some unary predicate U and there

is 0-ary predicate symbol F G R and a predicate or operation symbol R0 G R of

a type morm-rü,m>l which also occurs in R'.

If R0 is a predicate symbol, let "Z?0, F codes a unary predicate" be

(V*,) (Vx2 • • • xmx'2 >~x'm) (Rxxx2 •••xm *=>Rxxx2 • • • x'm).

If R0 is an operation symbol, let "R0,P codes a unary predicate" be (Vxx • • •

xm) (Rxx "' xm = xx V Rxx — xm = a). The idea is that x G U is deter-

mined by R0 fotxi-a and by F for x = a.  Then T\ { U} SS4 F| {R0,P}   ("Z?0,

P codes a unary predicate").
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Let 3 ! 1 be the sentence (\/xy) {x = y).

Lemma 14.   For any sets R and R' of symbols, if R and R' have the same

number of predicate symbols, then Th(R) ( 3 ! 1) = Th(R') ( 3 ! 1).

Proof.   On a set with exactly one element, an operation symbol has

exactly one possible interpretation and a predicate symbol exactly two.  Thus all

operation symbols are definable and eliminable and all predicate symbols can be

replaced by 0-ary predicates. Hence the lemma.

Classification theorem.

Theorem 15 (Classification theorem)   The following properties and

functions are a complete set of invariants for countable languages under cylindric

isomorphisms.

(1) The reduced type sequence.

(2) The existence of a constant.

(3) The number of predicate symbols.

(4) The number of unary predicate symbols in case the language's only

other symbols are for 0-ary predicates and unary operations.

Proof.   The four properties have been shown to be invariants.  Suppose T

and T' are the theories of two languages L and Z,' with symbols R and R' which

are the same with respect to the invariants. We must show that T and T' are

cylindrically isomorphic.

Since L and L' have the same reduced type sequence, they have the same

unboundedness.  If the unboundedness is undefined, R and R' are finite and so

the reduced type sequence is the full type sequence and hence T = T'.  Suppose

the unboundedness is defined.  Let R0 and R'0 he the set of symbols of R and

R' respectively whose type is less than or equal to the unboundedness. Then R ~

R0 and R' ~ R'0 are finite and have the same type sequence. Hence T\ (R ~ R0)

= T\(R' ~ R'0). Thus to show T = T' it suffices to show T\R'0 as T'\R'0.  Con-

sequently, we may henceforth assume R and R' have no symbols of type greater

than the unboundedness.

If the unboundedness is 0, the reduced type sequence is the full sequence

and hence T as T'. If the unboundedness is Vi, the reduced type sequence and the

number of predicate symbols determine the full type sequence and hence T as T'.

Henceforth, assume the unboundedness of R and R' is > 1.

Suppose R and R' have constants a and a' respectively   Let R0 and R'0 he

R and R' respectively minus all constants except a and a'. By Lem-

ma 11, T= T\R0 and T' = T'\R'0. Hence to show 7/s T', it suffices to show

T\ R0 = T'\R'0. Henceforth assume R and R' have no constants or exactly one

constant each, a and a' respectively.
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Since R and R' have the same number of predicate symbols, F(3 !1) =

F'(3 !1) by Lemma 14. It remains to be shown that F(3 > 2) a F'(3 > 2).

Suppose the unboundedness is ¥= lxh and =*= co.  If there are no constants,

then F(3 > 2) = F'(3 > 2) by Lemma 9 or 10. If there are unique constants a

and a, then F(3 > 2)1 {a} a F'(3 > 2)| {a'}   and, by Lemma 9 or 10,

F(3 > 2)|(R ~ {a}) a F(3 > 2)|(R' ~ {a'}).  Hence F(3 > 2) a F'( 3 > 2).

Suppose the unboundedness is co. Then, in the case of no constants,

F(3 > 2) = Th(R) (3 > 2) =, by Lemma 9 or 10, F«(R U R') (3 > 2) =

Th(R') { 3 > 2) = F'(3 > 2). The case with a unique constant is handled similar-

ly as in the previous paragraph.

Suppose the unboundedness is 1 i£ and there are no constants.  If the num-

ber of unary predicates in R and/or R' is finite, then the reduced type sequence,

the number of predicate symbols, and the number of unary predicate symbols de-

termine the full type sequence and hence F(3 >2) = 7'(]> 2). If there are infi-

nitely many unary predicates, let R0 and R'0 be the set of unary operation symbols of

R and R' respectively. Then F(3 > 2)1 R0 a F'(3 > 2)1 R'0   is clear and

F(3 > 2)1 (R ~ R0) a F'(3 > 2)|(R' ~ RÓ) Mows from Lemma 9. Hence

F(3>2)=F'(3 >2).

Suppose the unboundedness is 1 ̂ h and there are unique constants a and a .

Let U be a countably infinite set of propositional letters disjoint from R and R'.

Then F(3 > 2) = F«(R) (3 > 2) a, by Lemma 12, Th(R U U) (3 > 2) ~, by

Lemma 13, Th(R' U Ü) (3 > 2) s Th(R') (3 > 2) = F(3 > 2).

Hence F a T'.

Whüe we have considered only countable languages, the generalization of the

Classification theorem to languages of arbitrary cardinality is not too difficult.

The corresponding classification problem for the Boolean algebras of

sentences of countable languages has been solved by Hanf and his student, Simons.

In this case all languages of infinite similarity type have isomorphic Boolean alge-

bras.  So do aU languages of finite similarity type with at least one symbol of type

> 2 or at least two symbols of type Vh. So do aU languages of finite simüarity

type with no symbols of type > 2 and exactly one of type VA. The remaining

cases are all nonisomorphic.
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