Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The generalized Fredholm operators


Author: Kung Wei Yang
Journal: Trans. Amer. Math. Soc. 216 (1976), 313-326
MSC: Primary 47B30; Secondary 47A55
DOI: https://doi.org/10.1090/S0002-9947-1976-0423114-X
MathSciNet review: 0423114
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X, Y be Banach spaces over either the real field or the complex field. A continuous linear operator will be called a generalized Fredholm operator if $ T(X)$ is closed in Y, and Ker T and Coker T are reflexive Banach spaces. A theory similar to the classical Fredholm theory exists for the generalized Fredholm operators; and the similarity brings out the correspondence:

Reflexive Banach spaces $ \leftrightarrow $ finite-dimensional spaces,

weakly compact operators $ \leftrightarrow $ compact operators,

generalized Fredholm operators $ \leftrightarrow $ Fredholm operators,

Tauberian operators with closed range $ \leftrightarrow $ semi-Fredholm operators.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Algebraic K-theory, Benjamin, New York and Amsterdam, 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [2] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. MR 19, 756. MR 0090020 (19:756a)
  • [3] M. M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York and Berlin, 1973. MR 0344849 (49:9588)
  • [4] J. A. Dieudonné, Fondements de l'analyse moderne, Pure and Appl. Math., vol. 10, Academic Press, New York and London, 1960. MR 22 #11074.
  • [5] N. Dunford and J. T. Schwartz, Linear operators. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [6] N. Kalton and A. Wilansky, Tauberian operators on Banach spaces, Preprint, 1974. MR 0473896 (57:13555)
  • [7] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, New York and Berlin, 1971. MR 0354798 (50:7275)
  • [8] R. S. Palais, Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies, no. 57, Princeton Univ. Press, Princeton, N. J., 1965. MR 33 #6649. MR 0198494 (33:6649)
  • [9] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London and New York, 1973. MR 0340375 (49:5130)
  • [10] R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186. MR 0036935 (12:186e)
  • [11] M. Schechter, Principles of functional analysis, Academic Press, New York and London, 1971. MR 0445263 (56:3607)
  • [12] K.-W. Yang, A note on reflexive Banach spaces, Proc. Amer. Math. Soc. 18 (1967), 859-861. MR 35 #5905. MR 0215061 (35:5905)
  • [13] -, Completion of normed linear spaces, Proc. Amer. Math. Soc. 19 (1968), 801-806. MR 37 #1962. MR 0226372 (37:1962)
  • [14] -, Index of Fredholm operators, Proc. Amer. Math. Soc. 41 (1973), 329-330. MR 47 #7492. MR 0318946 (47:7492)
  • [15] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York and London, 1972. MR 0361893 (50:14335)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B30, 47A55

Retrieve articles in all journals with MSC: 47B30, 47A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0423114-X
Keywords: Generalized Fredholm operator, reflexive Banach space, weakly compact operator, Tauberian operator, exact sequence
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society