Estimates for the Neumann operator in weighted Hilbert spaces
Author:
Sidney L. Hantler
Journal:
Trans. Amer. Math. Soc. 217 (1976), 395406
MSC:
Primary 32A15; Secondary 30A82
MathSciNet review:
0393535
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Estimates for the operator are used to derive estimates for the Neumann operator in weighted Hilbert spaces. The technique is similar to that used to prove regularity of solutions of elliptic partial differential equations. A priori estimates are first obtained for smooth compactly supported forms and these estimates are then extended by suitable approximation results. These estimates are applied to give new bounds for the reproducing kernels in the subspaces of entire functions.
 [1]
Stefan
Bergman, The Kernel Function and Conformal Mapping,
Mathematical Surveys, No. 5, American Mathematical Society, New York, N.
Y., 1950. MR
0038439 (12,402a)
 [2]
S. L. Hantler, Estimates for reproducing kernels in weighted Hilbert spaces of entire functions, RC 4926, IBM T. J. Watson Research Center, Yorktown Heights, New York, 1974, 117 pp.
 [3]
, Polynomial approximation in certain weighted Hilbert spaces of entire functions (to appear).
 [4]
Lars
Hörmander, An introduction to complex analysis in several
variables, D. Van Nostrand Co., Inc., Princeton, N.J.Toronto,
Ont.London, 1966. MR 0203075
(34 #2933)
 [5]
Lars
Hörmander, 𝐿² estimates and existence theorems
for the ∂\ operator, Acta Math. 113 (1965),
89–152. MR
0179443 (31 #3691)
 [6]
Norberto
Kerzman, The Bergman kernel function. Differentiability at the
boundary, Math. Ann. 195 (1972), 149–158. MR 0294694
(45 #3762)
 [7]
I. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112148; ibid. (2) 79 (1964), 450472. MR 27 #2999; 34 #8010.
 [8]
D. J. Newman and H. S. Shapiro, A Hilbert space of entire functions related to the operational calculus, University of Michigan, Ann Arbor, Mich., 1964, 92 pp. (mimeographed notes).
 [9]
B.
A. Taylor, On weighted polynomial approximation of entire
functions, Pacific J. Math. 36 (1971), 523–539.
MR
0284801 (44 #2025)
 [1]
 S. Bergman, The kernel function and conformal mapping, Math. Surveys, no. 5, Amer. Math. Soc., Providence, R. I., 1950. MR 12, 402. MR 0038439 (12:402a)
 [2]
 S. L. Hantler, Estimates for reproducing kernels in weighted Hilbert spaces of entire functions, RC 4926, IBM T. J. Watson Research Center, Yorktown Heights, New York, 1974, 117 pp.
 [3]
 , Polynomial approximation in certain weighted Hilbert spaces of entire functions (to appear).
 [4]
 L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 34 #2933. MR 0203075 (34:2933)
 [5]
 , estimates and existence theorems for the operator, Acta Math. 113 (1965), 89152. MR 31 #3691. MR 0179443 (31:3691)
 [6]
 N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149158. MR 45 #3762. MR 0294694 (45:3762)
 [7]
 I. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112148; ibid. (2) 79 (1964), 450472. MR 27 #2999; 34 #8010.
 [8]
 D. J. Newman and H. S. Shapiro, A Hilbert space of entire functions related to the operational calculus, University of Michigan, Ann Arbor, Mich., 1964, 92 pp. (mimeographed notes).
 [9]
 B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523539. MR 44 #2025. MR 0284801 (44:2025)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
32A15,
30A82
Retrieve articles in all journals
with MSC:
32A15,
30A82
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197603935352
PII:
S 00029947(1976)03935352
Keywords:
Neumann problem,
operator,
weighted Hilbert spaces,
reproducing kernel,
Bergman kernel function
Article copyright:
© Copyright 1976
American Mathematical Society
