Estimates for the -Neumann operator in weighted Hilbert spaces

Author:
Sidney L. Hantler

Journal:
Trans. Amer. Math. Soc. **217** (1976), 395-406

MSC:
Primary 32A15; Secondary 30A82

DOI:
https://doi.org/10.1090/S0002-9947-1976-0393535-2

MathSciNet review:
0393535

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Estimates for the operator are used to derive estimates for the Neumann operator in weighted Hilbert spaces. The technique is similar to that used to prove regularity of solutions of elliptic partial differential equations. A priori estimates are first obtained for smooth compactly supported forms and these estimates are then extended by suitable approximation results. These estimates are applied to give new bounds for the reproducing kernels in the subspaces of entire functions.

**[1]**Stefan Bergman,*The Kernel Function and Conformal Mapping*, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR**0038439****[2]**S. L. Hantler,*Estimates for reproducing kernels in weighted Hilbert spaces of entire functions*, RC 4926, IBM T. J. Watson Research Center, Yorktown Heights, New York, 1974, 117 pp.**[3]**-,*Polynomial approximation in certain weighted Hilbert spaces of entire functions*(to appear).**[4]**Lars Hörmander,*An introduction to complex analysis in several variables*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0203075****[5]**Lars Hörmander,*𝐿² estimates and existence theorems for the ∂ operator*, Acta Math.**113**(1965), 89–152. MR**0179443**, https://doi.org/10.1007/BF02391775**[6]**Norberto Kerzman,*The Bergman kernel function. Differentiability at the boundary*, Math. Ann.**195**(1972), 149–158. MR**0294694**, https://doi.org/10.1007/BF01419622**[7]**I. J. Kohn,*Harmonic integrals on strongly pseudoconvex manifolds*. I, II, Ann. of Math. (2)**78**(1963), 112-148; ibid. (2)**79**(1964), 450-472. MR**27**#2999;**34**#8010.**[8]**D. J. Newman and H. S. Shapiro,*A Hilbert space of entire functions related to the operational calculus*, University of Michigan, Ann Arbor, Mich., 1964, 92 pp. (mimeographed notes).**[9]**B. A. Taylor,*On weighted polynomial approximation of entire functions*, Pacific J. Math.**36**(1971), 523–539. MR**0284801**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32A15,
30A82

Retrieve articles in all journals with MSC: 32A15, 30A82

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0393535-2

Keywords:
-Neumann problem,
operator,
weighted Hilbert spaces,
reproducing kernel,
Bergman kernel function

Article copyright:
© Copyright 1976
American Mathematical Society