Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the torus theorem and its applications


Author: C. D. Feustel
Journal: Trans. Amer. Math. Soc. 217 (1976), 1-43
MSC: Primary 57A10
DOI: https://doi.org/10.1090/S0002-9947-1976-0394666-3
MathSciNet review: 0394666
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove the torus theorem and that manifolds in a certain class of 3-manifolds with toral boundary are determined by their fundamental groups alone. Both of these results were reported by F. Waldhausen. We also give an extension of Waldhausen's generalization of the loop theorem.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Brown, Unknotting in $ {M^2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505. MR 33 #6640. MR 0198482 (33:6640)
  • [2] E. M. Brown and R. H. Crowell, The augmentation subgroup of a link, J. Math. Mech. 15 (1966), 1065-1074. MR 33 #4920. MR 0196734 (33:4920)
  • [3] C. D. Feustel, Some applications of Waldhausen's results on irreducible surfaces, Trans. Amer. Math. Soc. 149 (1970), 575-583. MR 41 #6188. MR 0261575 (41:6188)
  • [4] C. D. Feustel and N. Max, On a problem of R. H. Fox, Topology of Manifolds (Proc. Inst. Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 132-139. MR 42 #8472. MR 0273594 (42:8472)
  • [5] C. D. Feustel, On embedding essential annuli in $ {M^3}$, Canad. J. Math. 26 (1974), 1341-1350. MR 0362311 (50:14753)
  • [6] James W. Cannon and C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. Amer. Math. Soc. 215 (1976), 219-239. MR 0391094 (52:11916)
  • [7] R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 168-176. MR 25 #3523. MR 0140100 (25:3523)
  • [8] L. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [9] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 19, 761. MR 0090053 (19:761a)
  • [10] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286. MR 17, 291. MR 0072482 (17:291d)
  • [11] A. Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174-178. MR 21 #2242. MR 0103474 (21:2242)
  • [12] J. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19. MR 22 #12526. MR 0121796 (22:12526)
  • [13] F. Waldhausen, Grupen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223. MR 0236930 (38:5223)
  • [14] -, Eine Verallgemeinerung des Schleifensatzes, Topology 6 (1967), 501-504. MR 36 #3366. MR 0220300 (36:3366)
  • [15] -, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)
  • [16] -, The word problem in fundamental groups of sufficiently large irreducible 3-manifolds, Ann. of Math. (2) 88 (1968), 272-280. MR 39 #2167. MR 0240822 (39:2167)
  • [17] -, On the determination of some bounded 3-manifolds by their fundamental groups alone, Proc. Internat. Sympos. on Topology and its Applications, Herieg-Novi, Yugoslavia, Aug. 25-31, 1968, Beograd, 1969, pp. 331-332.
  • [18] J. H. C. Whitehead, On 2-spheres in 3-manifolds, Bull. Amer. Math. Soc. 64 (1958), 161-166. MR 21 #2241. MR 0103473 (21:2241)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0394666-3
Keywords: Torus, annulus, essential map, essential embedding
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society