Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence of periodic solutions of nonlinear differential equations


Author: R. Kannan
Journal: Trans. Amer. Math. Soc. 217 (1976), 225-236
MSC: Primary 34C25
DOI: https://doi.org/10.1090/S0002-9947-1976-0397091-4
MathSciNet review: 0397091
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The nonlinear differential equation $ x'' = f(t,x(t))$, f being $ 2\pi $-periodic in t, is considered for the existence of $ 2\pi $-periodic solutions. The equation is reduced to an equivalent system of two Hammerstein equations. The case of nonlinear perturbation at resonance is also discussed.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math. 23 (1970), 123-144. MR 41 #2454. MR 0257805 (41:2454)
  • [2] L. Cesari, Nonlinear functional analysis, Lecture notes, C.I.M.E., 1972.
  • [3] L. Cesari and R. Kannan, Functional analysis and nonlinear differential equations, Bull. Amer. Math. Soc. 79 (1973), 1216-1219. MR 48 #12183. MR 0333861 (48:12183)
  • [4] J. K. Hale, Applications of alternative problems, Brown University Lecture Notes, 1971.
  • [5] -, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [6] R. Kannan, Periodically perturbed conservative systems, J. Differential Equations, 16 (1974), 506-514. MR 0417493 (54:5543)
  • [7] A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. (4) 82 (1969), 49-68. MR 40 #2972. MR 0249731 (40:2972)
  • [8] A. C. Lazer and D. A. Sanchez, On periodically perturbed conservative systems, Michigan Math. J. 16 (1969), 193-200. MR 39 #7212. MR 0245906 (39:7212)
  • [9] D. E. Leach, On Poincaré's perturbation theorem and a theorem of W. S. Loud, J. Differential Equations 7 (1970), 34-53. MR 40 #4539. MR 0251308 (40:4539)
  • [10] W. S. Loud, Periodic solutions of nonlinear differential equations of Duffing type, Proc. U. S.-Japan Seminar on Differential and Functional Equations, Benjamin, New York, 1967, pp. 199-224. MR 36 #6704. MR 0223656 (36:6704)
  • [11] G. J. Minty, On a ``monotonicity'' method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U. S. A. 50 (1963), 1038-1041. MR 28 #5358. MR 0162159 (28:5358)
  • [12] M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511. MR 13, 150. MR 0042697 (13:150b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C25

Retrieve articles in all journals with MSC: 34C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0397091-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society