Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bernoulli convolutions and differentiable functions


Author: R. Kaufman
Journal: Trans. Amer. Math. Soc. 217 (1976), 99-104
MSC: Primary 42A72
DOI: https://doi.org/10.1090/S0002-9947-1976-0397296-2
MathSciNet review: 0397296
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bernoulli convolutions, similar in structure to convolutions with a constant ratio, are considered in relation to differentiable transformations. A space of functions on the Cantor set leads to highly singular measures that nevertheless resemble absolutely continuous measures sufficiently to control their Fourier-Stieltjes transforms.


References [Enhancements On Off] (What's this?)

  • [1] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [2] J.-P. Kahane, Séries de Fourier absolutment convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 43 #801. MR 0275043 (43:801)
  • [3] R. P. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187. MR 38 #4902. MR 0236607 (38:4902)
  • [4] -, Sets of multiplicity and differentiable functions, Proc. Amer. Math. Soc. 32 (1972), 472-476. MR 49 #5678. MR 0340928 (49:5678)
  • [5] -, Menshoff's set of mulitplicity, Math. Scand. 34 (1974).
  • [6] R. Salem, Algebraic numbers and Fourier analysis, Boston, Mass. 1963. MR 28 #1169. MR 0157941 (28:1169)
  • [7] H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143-159. MR 13, 333. MR 0043878 (13:333d)
  • [8] A. Zygmund, Trigonometric series. Vol. II, Cambridge Univ. Press, New York, 1959, 1968. MR 21 #6498; 38 #4882.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A72

Retrieve articles in all journals with MSC: 42A72


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0397296-2
Keywords: Bernoulli convolution, $ {M_0}$-set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society