Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L$-functions of a quadratic form


Authors: T. Callahan and R. A. Smith
Journal: Trans. Amer. Math. Soc. 217 (1976), 297-309
MSC: Primary 10H10
DOI: https://doi.org/10.1090/S0002-9947-1976-0404164-6
MathSciNet review: 0404164
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let Q be a positive definite integral quadratic form in n variables, with the additional property that the adjoint form $ {Q^\dag }$ is also integral. Using the functional equation of the Epstein zeta function, we obtain a symmetric functional equation of the L-function of Q with a primitive character $ \omega \bmod q$ (additive or multiplicative) defined by $ \Sigma \omega (Q({\text{x}}))Q{({\text{x}})^{ - s}},\operatorname{Re} (s) > n/2$, where the summation extends over all $ {\text{x}} \in {Z^n},{\text{x}} \ne 0$; our result does not depend upon the usual restriction that q be relatively prime to the discriminant of Q, but rather on a much milder restriction.


References [Enhancements On Off] (What's this?)

  • [1] S. Chowla and R. A. Smith, On certain functional equations, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 43-47 (1968). MR 38 #2101. MR 0233780 (38:2101)
  • [2] P. Epstein, Zur Theorie allgemeine Zeta funktionen. I, II, Math. Ann. 56 (1903), 615-644; ibid. 63 (1907), 205-216. MR 1511190
  • [3] T. Estermann, On the representations of a number as a sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133.
  • [4] B. W. Jones, The arithmetic theory of quadratic forms, Carus Monograph Series, no. 10, Math. Assoc. Amer.; distributed by Wiley, New York, 1950. MR 12, 244. MR 0037321 (12:244a)
  • [5] M. Newman, Integral matrices, Academic Press, New York, 1972. MR 0340283 (49:5038)
  • [6] C. L. Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research Lectures on Math., no. 23, Tata Institute of Fundamental Research, Bombay, 1965. MR 41 #6760. MR 0262150 (41:6760)
  • [7] R. A. Smith, The circle problem in an arithmetic progression, Canad. Math. Bull. 11 (1968), 175-184. MR 38 #1064. MR 0232741 (38:1064)
  • [8] H. M. Stark, L-functions and character sums for quadratic forms. I, Acta Arith. 14 (1967/68), 35-50. MR 37 #2707. MR 0227122 (37:2707)
  • [9] -, L-functions and character sums for quadratic forms. II, Acta. Arith. 15 (1968/69), 307-317. MR 39 #4101. MR 0242774 (39:4101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10H10

Retrieve articles in all journals with MSC: 10H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0404164-6
Keywords: L-functions, quadratic forms, functional equation, Gaussian sums
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society