Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A special integral and a Gronwall inequality


Author: Burrell W. Helton
Journal: Trans. Amer. Math. Soc. 217 (1976), 163-181
MSC: Primary 26A42; Secondary 26A86
DOI: https://doi.org/10.1090/S0002-9947-1976-0407215-8
MathSciNet review: 0407215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers a special integral $ (I)\smallint _a^b(fdg + H)$ which is a subdivision-refinement-type limit of the approximating sum

$\displaystyle \sum\limits_1^n {\{ f({t_i})[g({x_i}) - g({x_{i - 1}})] + H({x_{i - 1}},{x_i})\} ,} $

where $ {x_{i - 1}} < {t_i} < {x_i}$. The author shows, with appropriate restrictions, that $ (I)\smallint _a^b(fdg + H)$ exists if and only if

$\displaystyle (R)\smallint _x^y(fdg + H - {A^ - }) = (L)\smallint _x^y(fdg + H + {A^ + })$

for $ a \leqslant x < y \leqslant b$, where $ A(p,q) = [f(q) - f(p)][g(q) - g(p)],{A^ - }(p,q) = A({q^ - },q)$ and $ {A^ + }(p,q) = A(p,{p^ + })$. Furthermore, if either of the equivalent statements is true, then all the integrals are equal. These equivalent statements are used to prove an integration-by-parts theorem and to solve a Gronwall inequality involving this special integral. Product integrals are used in the solution of the Gronwall inequality.

References [Enhancements On Off] (What's this?)

  • [1] S. C. Chu and F. T. Metcalf, On Gronwall's inequality, Proc. Amer. Math. Soc. 18 (1967), 439-440. MR 35 #3400. MR 0212529 (35:3400)
  • [2] Ben Dushnik, On the Stieltjes integral, Dissertation, University of Michigan, 1931.
  • [3] B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 #6167. MR 0188731 (32:6167)
  • [4] B. W. Helton, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493-500. MR 40 #1562. MR 0248310 (40:1562)
  • [5] -, The solution of a nonlinear Gronwall inequality, Proc. Amer. Math. Soc. 38 (1973), 337-342. MR 46 #9287. MR 0310185 (46:9287)
  • [6] J. V. Herod, A Gronwall inequality for linear Stieltjes integrals, Proc. Amer. Math. Soc. 23 (1969), 34-36. MR 40 #2802. MR 0249557 (40:2802)
  • [7] J. R. Kroll and K. P. Smith, An eigenvalue problem for the Stieltjes mean sigma-integral related to Gronwall's inequality, Proc. Amer. Math. Soc. 33 (1972), 384-388. MR 45 #833. MR 0291742 (45:833)
  • [8] W. W. Schmaedeke and G. R. Sell, The Gronwall inequality for modified Stieltjes integrals, Proc. Amer. Math. Soc. 19 (1968), 1217-1222. MR 37 #6422. MR 0230864 (37:6422)
  • [9] H. L. Smith, On the existence of the Stieltjes integral, Trans. Amer. Math. Soc. 27 (1925), 491-515. MR 1501324
  • [10] D. R. Snow, Gronwall's inequality for systems of partial differential equations in two independent variables, Proc. Amer. Math. Soc. 33 (1972), 46-54. MR 45 #7240. MR 0298188 (45:7240)
  • [11] D. W. Willett, A linear generalization of Gronwall's inequality, Proc. Amer. Math. Soc. 16 (1965), 774-778. MR 31 #5953. MR 0181726 (31:5953)
  • [12] D. W. Willett and J. S. W. Wong, On the discrete analogues of some generalizations of Gronwall's inequality, Monatsh. Math. 69 (1965), 362-367. MR 32 #2644. MR 0185175 (32:2644)
  • [13] F. M. Wright and J. D. Baker, On integration-by-parts for weighted integrals, Proc. Amer. Math. Soc. 22 (1969), 42-52. MR 39 #7056. MR 0245750 (39:7056)
  • [14] F. M. Wright, M. L. Klasi and D. R. Kennebeck, The Gronwall inequality for weighted integrals, Proc. Amer. Math. Soc. 30 (1971), 504-510. MR 44 #380. MR 0283147 (44:380)
  • [15] Yue-sheng Li, The bound, stability and error estimates for the solution of nonlinear differential equations, Acta Math. Sinica 12 (1962), 32-39 = Chinese Math. 3 (1963), 34-41. MR 27 #405. MR 0150406 (27:405)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A42, 26A86

Retrieve articles in all journals with MSC: 26A42, 26A86


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0407215-8
Keywords: Integrals, Gronwall's inequality, product integrals, integration-by-parts, bounded variation, Smith mean integral, Cauchy integrals, Dushkin interior integral, subdivision-refinement-limit
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society