Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized Kloosterman sums and the Fourier coefficients of cusp forms


Author: L. Alayne Parson
Journal: Trans. Amer. Math. Soc. 217 (1976), 329-350
MSC: Primary 10D15
DOI: https://doi.org/10.1090/S0002-9947-1976-0412112-8
MathSciNet review: 0412112
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Certain generalized Kloosterman sums connected with congruence subgroups of the modular group and suitably restricted multiplier systems of half-integral degree are studied. Then a Fourier coefficient estimate is obtained for cusp forms of half-integral degree on congruence subgroups of the modular group and the Hecke groups $ G(\sqrt 2 )$ and $ G(\sqrt 3 )$.


References [Enhancements On Off] (What's this?)

  • [1] T. Esterman, Vereinfachter Beweis eines Satzes von Kloosterman, Abh. Math. Seminar Hamburg Univ. 7 (1929), 82-98.
  • [2] R. C. Gunning, Lectures on modular forms, Ann. of Math. Studies, no. 48, Princeton Univ. Press, Princeton, N. J., 1962. MR 24 #A2664. MR 0132828 (24:A2664)
  • [3] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699. MR 1513069
  • [4] J. I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc. 3 (1902), 1-11. MR 1500582
  • [5] H. D. Kloosterman, Asymptötische Formeln für die Fourierkoeffizienten ganzer Modulformen, Abh. Math. Seminar Hamburg Univ. 5 (1927), 337-352.
  • [6] M. I. Knopp, Determination of certain roots of unity in the theory of automorphic forms of dimension zero, Duke Math. J. 27 (1960), 497-506. MR 22 #5614. MR 0114795 (22:5614)
  • [7] -, Modular functions in analytic number theory, Markham, Chicago, Illinois, 1970. MR 42 #198.
  • [8] M. I. Knopp and J. R. Smart, On Kloosterman sums connected with modular forms of half-integral dimension, Illinois J. Math. 8 (1964), 480-487. MR 29 #2231. MR 0164940 (29:2231)
  • [9] J. H. van Lint, On the multiplier system of the Riemann-Dedekind function $ \eta $, Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20 (1958), 522-527. MR 21 #2065. MR 0103287 (21:2065)
  • [10] J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, Amer. Math. Soc., Providence, R. I., 1964. MR 29 #1332. MR 0164033 (29:1332)
  • [11] A. V. Malyšev, Generalized Kloosterman sums and their estimates, Vestnik Leningrad Univ. 15 (1960), no. 13, 59-75. (Russian) MR 23 #A2391. MR 0125084 (23:A2391)
  • [12] -, On Fourier coefficients of modular forms, Studies in Number Theory, Seminars in Math., V. A. Steklov Math. Inst., Leningrad, vol. 1; English transl., Consultants Bureau, New York, 1968. MR 38 #103.
  • [13] A. W. Mason, Lattice subgroups of free congruence groups, Glasgow Math. J. 10 (1969), 106-115. MR 43 #2112. MR 0276365 (43:2112)
  • [14] D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), 285-296. MR 32 #2484. MR 0185014 (32:2484)
  • [15] M. Newman, Modular quotient groups, Illinois J. Math. 18 (1974), 265-274. MR 0342625 (49:7371)
  • [16] M. F. Newman and J. R. Smart, Modulary groups of $ t \times t$ matrices, Duke Math. J. 30 (1963), 253-257. MR 26 #6265. MR 0148759 (26:6265)
  • [17] H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), 169-215. MR 1555346
  • [18] -, Über Modulfunktionen und Partitionenprobleme, Abh. Deutsch. Akad Wiss. Berlin K1. Math. Allg. Nat. 1954, no. 2, 59 pp. MR 17, 129.
  • [19] H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462. MR 1503417
  • [20] J. Raleigh, The Fourier coefficients of the invariants $ j({2^{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}};\tau )$ and $ j({3^{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}};\tau )$, Trans. Amer. Math. Soc. 87 (1958), 90-107. MR 20 #7103.
  • [21] R. A. Rankin, An $ \Omega $-result for the coefficients of cusp forms, Math. Ann. 203 (1973), 239-250. MR 48 #241. MR 0321876 (48:241)
  • [22] H. Salié, Über die Kloosterman Summen $ S(u,v;q)$, Math. Z. 34 (1931), 91-109.
  • [23] -, Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1932), 263-278.
  • [24] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc. Providence, R. I., 1965, pp. 1-15. MR 32 #93. MR 0182610 (32:93)
  • [25] J. R. Smart, Parametrization of automorphic forms for the Hecke groups $ G(\sqrt 2 )$ and $ G(\sqrt 3 )$, Duke Math. J. 31 (1964), 395-403. MR 29 #2390. MR 0165101 (29:2390)
  • [26] S. A. Stepanov, Estimation of Kloosterman sums, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 308-323 = Math. USSR Izv. 5 (1971), 319-336. MR 45 #5097. MR 0296036 (45:5097)
  • [27] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. MR 10, 234. MR 0027006 (10:234e)
  • [28] J. Young, On the group belonging to the sign $ (0,3;2,4,\infty )$ and the functions belonging to it, Trans. Amer. Math. Soc. 5 (1904), 81-104. MR 1500662

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10D15

Retrieve articles in all journals with MSC: 10D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0412112-8
Keywords: Kloosterman sums, Hecke groups, cusp forms
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society