Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The multiplicative behavior of $ \mathcal{H}$


Author: Pierre Antoine Grillet
Journal: Trans. Amer. Math. Soc. 217 (1976), 59-86
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9947-1976-0412311-5
MathSciNet review: 0412311
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various results are given describing the product of two $ \mathcal{H}$-classes in an arbitrary semigroup in terms of groups and homomorphisms.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Bastida, Groups and homomorphisms associated with a semigroup. I, Bol. Soc. Mat. Mexicana (2) 8 (1963), 26-45. (Spanish) MR 28 #5127. MR 0161923 (28:5127)
  • [2] -, Groups and homomorphisms associated with a semigroup. II, Bol. Soc. Mat. Mexicana (2) 9 (1964), 7-16. (Spanish) MR 32 #5752. MR 0188313 (32:5752)
  • [3] -, Groups and homomorphisms associated with a semigroup. III, Bol. Soc. Mat. Mexicana (2) 13 (1968), 84-87. (Spanish) MR 40 #5752. MR 0252532 (40:5752)
  • [4] K. K. Butler, On Kim's conjecture, Semigroup Forum 2 (1971), 281. MR 44 #4118. MR 0286911 (44:4118)
  • [5] -, On a Miller and Clifford theorem. (With editor's note.) Semigroup Forum 3 (1971/72), 92-94. MR 45 #5245. MR 0296184 (45:5245)
  • [6] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
  • [7] P. A. Grillet, Left coset extensions, Semigroup Forum 7 (1974), 200-263. MR 0382492 (52:3375)
  • [8] -, A coherence theorem for Schützenberger groups, J. Austral. Math. Soc. (submitted).
  • [9] R. P. Hunter and L. W. Anderson, Une version bilatère du groupe de Schützenberger, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 527-531. MR 33 #2745. MR 0194535 (33:2745)
  • [10] J. B. Kim, On full transformation semigroups, Semigroup Forum 1 (1970), 236-242. MR 42 #6134. MR 0271251 (42:6134)
  • [11] J. E. Leech, Congruences under $ \mathcal{H}$, University of Tennessee, 1972 (preprint).
  • [12] M. Petrich, Representations of semigroups and the translational hull of a regular Rees matrix semigroup, Trans. Amer. Math. Soc. 143 (1969), 303-318. MR 40 #253. MR 0246984 (40:253)
  • [13] T. Tamura and M. Sasaki, Finite semigroups in which Lagrange's theorem holds, J. Gakugei Tokushima Univ. 10 (1959), 33-38. MR 22 #3757. MR 0112911 (22:3757)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0412311-5
Keywords: $ \mathcal{H}$-class, multiplicative properties of $ \mathcal{H}$, cosets, Schützenberger groups, coset decompositions, Bastida sets
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society