Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A local spectral theory for operators. V. Spectral subspaces for hyponormal operators


Author: Joseph G. Stampfli
Journal: Trans. Amer. Math. Soc. 217 (1976), 285-296
MSC: Primary 47B20; Secondary 47A15
DOI: https://doi.org/10.1090/S0002-9947-1976-0420325-4
MathSciNet review: 0420325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part of the paper we show that the local resolvent of a hyponormal operator satisfies a rather stringent growth condition. This result enables one to show that under a mild restriction, hyponormal operators satisfy Dunford's C condition. This in turn leads to a number of corollaries concerning invariant subspaces. In the second part we consider the local spectrum of a subnormal operator. The third section is concerned with the study of quasi-triangular hyponormal operators.


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, C. Foiaş and D. Voiculescu, Some results on non-quasitriangular operators. IV, Rev. Roumaine. Math. Pures Appl. 18 (1973), 487-514. MR 48 #12109a.
  • [2] R. G. Bartle, Spectral localization of operators in Banach spaces, Math Ann. 153 (1964), 261-269. MR 29 #1542. MR 0164243 (29:1542)
  • [3] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 16, 835. MR 0068129 (16:835a)
  • [4] J. E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285-310. MR 0423059 (54:11042)
  • [5] K. Clancey and B. Morrell, The essential spectrum of some Toeplitz operators (to appear). MR 0341162 (49:5912)
  • [6] J. A. Deddens and J. G. Stampfli, On a question of Douglas and Fillmore, Bull. Amer. Math. Soc. 79 (1973), 327-330. MR 47 #7483. MR 0318937 (47:7483)
  • [7] J. Dixmier and C. Foiaş, Sur le spectre ponctuel d'un opérateur, Colloq. Math. Soc. János Bolyai (5) Hilbert Space Operators, Tihany, Hungary, 1970, pp. 127-133. MR 0365175 (51:1428)
  • [8] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. MR 34 #3315. MR 0203464 (34:3315)
  • [9] N. Dunford, Spectral theory. II. Resolutions of the identity, Pacific J. Math. 2 (1952), 559-614. MR 14, 479. MR 0051435 (14:479a)
  • [10] N. Dunford and J. T. Schwartz, Linear operators. III, Spectral operators, Interscience, New York, 1971.
  • [11] P. R. Halmos, Quasitriangular operators, Acta. Sci. Math. (Szeged) 29 (1968), 283-293. MR 38 #2627. MR 0234310 (38:2627)
  • [12] R. Kulkarni, Subnormal operators and weighted shifts, Thesis, Indiana University, 1970.
  • [13] C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33-36. MR 43 #2550. MR 0276810 (43:2550)
  • [14] -, Resolvent vectors, invariant subspaces and sets of zero capacity, Math. Ann. 205 (1973), 165-171. MR 48 #4772. MR 0326428 (48:4772)
  • [15] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653-664. MR 43 #3829. MR 0278097 (43:3829)
  • [16] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [17] J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287-296. MR 33 #4687. MR 0196500 (33:4687)
  • [18] B. Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged Sect. Sci. Math. 11 (1947), 152-157. MR 9, 191. MR 0022309 (9:191b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B20, 47A15

Retrieve articles in all journals with MSC: 47B20, 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0420325-4
Keywords: Hyponormal operator, subnormal operator, local spectrum, local resolvent, quasi-triangular operator
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society