On the jump of an -recursively enumerable set

Author:
Richard A. Shore

Journal:
Trans. Amer. Math. Soc. **217** (1976), 351-363

MSC:
Primary 02F27

DOI:
https://doi.org/10.1090/S0002-9947-1976-0424544-2

MathSciNet review:
0424544

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the proper definition of the jump operator in -recursion theory and prove a sample theorem: *There is an incomplete* -*r.e. set with jump* *unless there is precisely one nonhyperregular* -*r.e. degree*. Thus we have a theorem in the first order language of Turing degrees with the jump which fails to generalize to all admissible .

**[1]**R. B. Jensen,*The fine structure of the constructible hierarchy. With a section by Jack Silver*, Ann. Math. Logic**4**(1972), 229-308; erratum, 443. MR**46**# 8834. MR**0309729 (46:8834)****[2]**R. Jhu,*Contributions to axiomatic recursion theory and related aspects of*-*recursion theory*, Ph. D. Thesis, University of Toronto, 1973.**[3]**G. E. Sacks,*Metarecursion theory*, Sets, Models and Recursion Theory (Proc. Summer School Math. Logic and Tenth Logic Colloq., Leicester, 1965), North-Holland, Amsterdam, 1967, pp. 243-263. MR**40**#7109. MR**0253896 (40:7109)****[4]**-,*Post's problem, admissible ordinals and regularity*, Trans. Amer. Math. Soc.**124**(1966), 1-23. MR**34**#1183. MR**0201299 (34:1183)****[5]**-,*Higher recursion theory*, Springer-Verlag (to appear). MR**1080970 (92a:03062)****[6]**J. R. Shoenfield,*Degrees of unsolvability*, North-Holland, Amsterdam, 1971. MR**0340011 (49:4768)****[7]**R. A. Shore,*Splitting an*-*recursively enumerable set*, Trans. Amer. Math. Soc.**204**(1975), 65-77. MR**0379154 (52:60)****[8]**-,*The recursively enumerable*-*degrees are dense*, Ann. Math. Logic (to appear).**[9]**-,*The irregular and non-hyperregular*-*r.e. degrees*, Israel J. Math. (to appear).**[10]**S. G. Simpson,*Admissible ordinals and recursion theory*, Ph. D. Thesis, M.I.T., 1971.**[11]**-,*Degree theory on admissible ordinals*, Generalized Recursion Theory (Proc. of the Oslo Symposium), J. E. Fenstad and P. G. Hinman (Editors), North-Holland, Amsterdam, 1974, pp. 165-194. MR**0537203 (58:27405)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
02F27

Retrieve articles in all journals with MSC: 02F27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0424544-2

Keywords:
-recursion theory,
admissible ordinals,
-recursively enumerable,
-degree,
-jump,
priority arguments

Article copyright:
© Copyright 1976
American Mathematical Society