Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Pointwise bounded approximation and analytic capacity of open sets


Author: Steven Jacobson
Journal: Trans. Amer. Math. Soc. 218 (1976), 261-283
MSC: Primary 30A82
DOI: https://doi.org/10.1090/S0002-9947-1976-0419776-3
MathSciNet review: 0419776
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the semi-additivity question for analytic capacity by studying the relation between the capacities of bounded open sets and their closures.


References [Enhancements On Off] (What's this?)

  • [1] Andrew Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431. MR 0246125 (39:7431)
  • [2] Philip C. Curtis, Jr., Peak points for algebras of analytic functions, J. Functional Analysis 3 (1969), 35-47. MR 39 #463. MR 0239104 (39:463)
  • [3] Alexander M. Davie, Analytic capacity and approximation problems, Trans. Amer. Math. Soc. 171 (1972), 409-444. MR 0350009 (50:2502)
  • [4] Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [5] T. W. Gamelin and J. Garnett, Pointwise bounded approximation and hypodirichlet algebras, Bull. Amer. Math. Soc. 77 (1971), 137-141. MR 42 #6491. MR 0271608 (42:6491)
  • [6] -, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis 8 (1971), 360-404. MR 46 #4153. MR 0295085 (45:4153)
  • [7] John Garnett, Metric conditions for rational approximation, Duke Math. J. 37 (1970), 689-699. MR 0269851 (42:4746)
  • [8] -, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 24 (1970), 696-699. MR 42 #4746.
  • [9] -, Analytic capacity and measure, Lecture Notes in Math., vol. 297, Springer-Verlag, Berlin and New York, 1972. MR 0454006 (56:12257)
  • [10] N. S. Landkof, Foundations of modern potential theory, ``Nauka", Moscow, 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 180, Springer-Verlag, Berlin and New York, 1972. The table on p. 172 gives values for the logarithmic capacity of several sets in the plane, and these are also the values of the analytic capacity whenever the sets are compact and connected. MR 35 #5644. MR 0350027 (50:2520)
  • [11] Trevor J. McMinn, Linear measures of some sets of the Cantor type, Proc. Cambridge Philos. Soc. 53 (1957), 312-317. MR 19, 20. MR 0085318 (19:20f)
  • [12] Christian Pommerenke, Über die analytische Kapazität, Arch. Math. 11 (1960), 270-277. MR 22 #5740c. MR 0114924 (22:5740c)
  • [13] John F. Randolph, Some properties of sets of the Cantor type, J. London Math. Soc. 16 (1941), 38-42. MR 3, 226. MR 0005887 (3:226b)
  • [14] Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1966, 1974. MR 35 #1420; 49 #8783. MR 0210528 (35:1420)
  • [15] N. A. Širokov, A certain property of analytic capacity, Vestnik Leningrad. Univ. 1971, no. 19, 75-82. (Russian) MR 46 #2034.
  • [16] -, Certain properties of analytic capacity, Vestnik Leningrad. Univ. 1972, no. 19, 77-86. (Russian) MR 46 #345. MR 0301187 (46:345)
  • [17] N. A. Širokov, Analytic capacity of sets that are close to a smooth curve, Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom. Vyp. 4 (1973), 73-78, 153. (Russian) MR 48 #11486. MR 0333161 (48:11486)
  • [18] P. Urysohn, Sur une fonction analytique partout continue, Fund. Math. 4 (1923), 144-150.
  • [19] A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141-199 = Russian Math. Surveys 22 (1967), no. 6, 139-200. MR 37 #5404. MR 0229838 (37:5404)
  • [20] Lawrence Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., no. 50, Springer-Verlag, Berlin and New York, 1968. MR 37 #3018. MR 0227434 (37:3018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A82

Retrieve articles in all journals with MSC: 30A82


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0419776-3
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society