Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Positive definite measures with applications to a Volterra equation


Author: Olof J. Staffans
Journal: Trans. Amer. Math. Soc. 218 (1976), 219-237
MSC: Primary 45D05; Secondary 45M05, 42-XX
DOI: https://doi.org/10.1090/S0002-9947-1976-0458086-5
MathSciNet review: 0458086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the asymptotic behavior of the solutions of the nonlinear Volterra integrodifferential equation

$\displaystyle x'(t) + \int_0^t {g(x(t - \tau ))\;d\mu (\tau ) = f(t),}$ ($ \ast$)

with a positive definite kernel $ \mu $. In particular, we give new sufficient conditions on the kernel $ \mu $, which together with standard assumptions on f and g yield results on boundedness and asymptotic behavior of the solutions of $ (\ast)$. Our proofs are based on the theory of distribution Fourier transforms.

References [Enhancements On Off] (What's this?)

  • [1] S. Bochner, Lectures on Fourier integrals, Akademische Verlagsgesellschaft, Leipzig, 1932; English transl., Ann. of Math. Studies, no. 42, Princeton Univ. Press., Princeton, N. J., 1959. MR 21 #5851. MR 0107124 (21:5851)
  • [2] J. L. B. Cooper, Positive definite functions of a real variable, Proc. London Math. Soc. (3) 10 (1960), 53-66. MR 22 #6981. MR 0116186 (22:6981)
  • [3] C. Corduneanu, Integral equations and stability of feedback systems, Academic Press, New York, 1973. MR 0358245 (50:10710)
  • [4] A. Halanay, On the asymptotic behavior of the solutions of an integro-differential equation, J. Math. Anal. Appl. 10 (1965), 319-324. MR 31 #579. MR 0176304 (31:579)
  • [5] K. B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc. 142 (1969), 539-555. MR 39 #7364. MR 0246058 (39:7364)
  • [6] -, On a nonlinear Volterra equation, Michigan Math. J. 16 (1969), 365-376. MR 40 #3225. MR 0249984 (40:3225)
  • [7] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Ser. in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844. MR 0133008 (24:A2844)
  • [8] F. Holland, On the representation of functions as Fourier transforms of unbounded measures (to appear). MR 0397295 (53:1154)
  • [9] J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963), 534-541. MR 27 #2824. MR 0152852 (27:2824)
  • [10] -, On some geometric structures for integrodifferential equations, Advances in Math. (to appear). MR 0438063 (55:10983)
  • [11] J. J. Levin and J. A. Nohel, On a nonlinear delay equation, J. Math. Anal. Appl. 8 (1964), 31-44. MR 29 #445. MR 0163142 (29:445)
  • [12] -, Perturbations of a nonlinear Volterra equation, Michigan Math. J. 12 (1965), 431-447. MR 32 #336. MR 0182854 (32:336)
  • [13] J. J. Levin and D. F. Shea, On the asymptotic behavior of the bounded solutions of some integral equations. I-III, J. Math. Anal. Appl. 37 (1972), 42-82, 288-326, 537-575. MR 46 #5971. MR 0306849 (46:5971)
  • [14] S.-O. Londen, The qualitative behavior of the solutions of a nonlinear Volterra equation, Michigan Math. J. 18 (1971), 321-330. MR 45 #2431. MR 0293354 (45:2431)
  • [15] -, On the variation of the solutions of a nonlinear integral equation, J. Math. Anal. Appl. (to appear). MR 0420177 (54:8192)
  • [16] R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1-37. MR 45 #2432. MR 0293355 (45:2432)
  • [17] R. K. Miller, Nonlinear Volterra integral equations, Benjamin, Menlo Park, Calif., 1971. MR 0511193 (58:23394)
  • [18] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Math. (to appear). MR 0500024 (58:17748)
  • [19] W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York. 1974. MR 49 #8783. MR 0344043 (49:8783)
  • [20] -, Functional analysis, McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [21] O. J. Staffans, Nonlinear Volterra integral equations with positive definite kernels, Proc. Amer. Math. Soc. 51 (1975), 103-108. MR 0370081 (51:6310)
  • [22] L. Schwartz, Théorie des distributions, new ed., Hermann, Paris, 1966. MR 35 #730. MR 0209834 (35:730)
  • [23] A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill, New York, 1965. MR 31 #1556. MR 0177293 (31:1556)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45D05, 45M05, 42-XX

Retrieve articles in all journals with MSC: 45D05, 45M05, 42-XX


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0458086-5
Keywords: Volterra equation, nonlinear integrodifferential equation, asymptotic stability, positive definiteness, strict positive definiteness, Fourier transform, distributions, $ {\text{weak}^\ast}$ convergence
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society