Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Breadth two topological lattices with connected sets of irreducibles


Author: J. W. Lea
Journal: Trans. Amer. Math. Soc. 219 (1976), 337-345
MSC: Primary 06A35
DOI: https://doi.org/10.1090/S0002-9947-1976-0401574-8
MathSciNet review: 0401574
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Breadth two topological lattices with connected sets of irreducible elements are characterized by these sets.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Anderson, On the distributivity and simple connectivity of plane topological lattices, Trans. Amer. Math. Soc. 91 (1959), 102-112. MR 21 #1365. MR 0102575 (21:1365)
  • [2] K. A. Baker and A. R. Stralka, Compact, distributive lattices of finite breadth, Pacific J. Math. 34 (1970), 311-320. MR 44 #129. MR 0282895 (44:129)
  • [3] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [4] D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965), 35-46. MR 31 #725. MR 0176453 (31:725)
  • [5] T. H. Choe, Locally compact lattices with small lattices, Michigan Math. J. 18 (1971), 81-85. MR 0282343 (43:8055)
  • [6] D. E. Edmondson, Modularity in topological lattices, Proc. Amer. Math. Soc. 21 (1969), 81-82. MR 39 #2132. MR 0240787 (39:2132)
  • [7] -, A modular topological lattice, Pacific J. Math. 29 (1969), 271-277. MR 39 #4062. MR 0242734 (39:4062)
  • [8] A. Y. W. Lau, Remarks on semilattices on the two-cell (preprint).
  • [9] J. D. Lawson, Intrinsic topologies in topological lattices and semilattices, Pacific J. Math. 44 (1973), 593-602. MR 47 #6580. MR 0318031 (47:6580)
  • [10] J. D. Lawson and B. Madison, Peripheral and inner points, Fund. Math. 69 (1970), 253-266. MR 43 #1175. MR 0275418 (43:1175)
  • [11] J.W. Lea, Jr., Irreducible elements in compact topological lattices, Dissertation, Louisiana State Univ., Baton Rouge, Louisiana, 1971.
  • [12] -, An embedding theorem for compact semilattices, Proc. Amer. Math. Soc. 34 (1972), 325-331. MR 0437407 (55:10337)
  • [13] -, The peripherality of irreducible elements of a lattice, Pacific J. Math. 45 (1973), 555-560. MR 47 #4875. MR 0316327 (47:4875)
  • [14] -, Sublattices generated by chains in modular topological lattices, Duke Math. J.41 (1974), 241-246. MR 0429678 (55:2689)
  • [15] K. Oberhoff, Semilattice structures on certain non-metric continua, Dissertation, Univ. of Houston, Houston, Texas, 1973.
  • [16] J. B. Rhodes, Decomposition of semilattices with applications to topological lattices, Pacific J. Math. 44 (1973), 299-307. MR 47 #3262. MR 0314710 (47:3262)
  • [17] E. D. Shirley and A. R. Stralka, Homomorphisms on connected topological lattices, Duke Math. J. 38 (1971), 483-490. MR 43 #5497. MR 0279776 (43:5497)
  • [18] A. D. Wallace, Factoring a lattice, Proc. Amer. Math. Soc. 9 (1958), 250-252. MR 20 #825. MR 0094306 (20:825)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A35

Retrieve articles in all journals with MSC: 06A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0401574-8
Keywords: Topological lattice, meet (join) irreducible
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society