PARTITIONS OF LARGE MULTIPARTITES WITH CONGRUENCE CONDITIONS. I

BY

M. M. ROBERTSON AND D. SPENCER

ABSTRACT. Let \(p(n_1, \ldots, n_j; A_1, \ldots, A_j) \) be the number of partitions of \((n_1, \ldots, n_j)\) where, for \(1 \leq l \leq j\), the \(l\)th component of each part belongs to the set \(A_l = \bigcup_{h(l)=1}^{q(l)} \{ a_{lh(l)} + Mv : v = 0, 1, 2, \ldots \} \) and \(M, q(l) \) and the \(a_{lh(l)} \) are positive integers such that \(0 < a_{11} \leq \cdots \leq a_{q(l)} \leq M \). Asymptotic expansions for \(p(n_1, \ldots, n_j; A_1, \ldots, A_j) \) are derived, when the \(n_l \to \infty \) subject to the restriction that \(n_1 \cdots n_j < n_l^{j+1-\varepsilon} \) for all \(l \), where \(\varepsilon \) is any fixed positive number. The case \(M = 1 \) and arbitrary \(j \) was investigated by Robertson [10] while several authors between 1940 and 1960 investigated the case \(j = 1 \) for different values of \(M \).

1. Introduction. Many authors have evaluated the number of different partitions of a multipartite number. A multipartite number of order \(j \) is a \(j\)-dimensional vector, the components of which are positive integers, and a partition of \((n_1, \ldots, n_j)\) is a solution of the vector equation

\[
\sum_k (n_{1k}, \ldots, n_{jk}) = (n_1, \ldots, n_j)
\]

in multipartites. Two partitions which differ only in the order of the multipartites on the left-hand side of (1.1) are regarded as identical.

In [10] Robertson, extending results of Wright [13], obtained asymptotic expansions for the number of different partitions of \((n_1, \ldots, n_j)\) when \(n_1 \cdots n_j < n_l^{j+1-\varepsilon} \) for all \(l \) where \(\varepsilon \) is any fixed positive number less than 1. In this article, we extend these results and obtain, subject to the same conditions on the \(n_l \), asymptotic expansions for \(p(n_1, \ldots, n_j; A_1, \ldots, A_j) \) the number of different partitions of \((n_1, \ldots, n_j)\) where, for \(1 \leq l \leq j \), the \(l\)th component of each part belongs to the set

\[
A_l = \bigcup_{h(l)=1}^{q(l)} \{ a_{lh(l)} + Mv : v = 0, 1, 2, \ldots \}
\]
300
M. M. ROBERTSON AND D. SPENCER

and M, $q(l)$ and the $a_{ih(l)}$ are positive integers such that, for every l, $0 < a_{i1} < \cdots < a_{iq(l)} \leq M$.

The residue classes in which the different components of each part must lie may, in general, be expressed in terms of different moduli, and also the permissible residue classes for any particular component may be expressed in terms of different moduli. These generalizations are, however, only superficial, as all the residue classes may be expressed in terms of residue classes modulo M, the least common multiple of the different moduli.

In [13] there is a fairly comprehensive list of papers concerned with the asymptotic evaluation of the number of partitions of multipartites. The only investigation, of which the authors are aware, concerning multipartites subject to congruence conditions is that of Passi [8]. This paper generalizes the partition problem to lattices but obtains an asymptotic evaluation not of the number of partitions but only of its logarithm.

The case $j = 1$ with different congruence conditions has been investigated by several authors. The Hardy-Ramanujan circle method as modified by Rademacher [9] has been employed to evaluate $p(n_1: A_1)$, where $q(1) = 2$, $a_{12} = M - a_{11}$, as a convergent series. The case $M = 6$ was obtained by Niven [7], $M = 5$ by Lehner [5] and Livingood [6] solved the case where M is any prime > 3. Later Iseki [3] evaluated $p(n_1: A_1)$ when M is composite > 3 and $(a_{11}, M) = 1$. Hagis [2] evaluated $p(n_1: A_1)$ for all odd primes M, where $q(1) = 2r$ and $a_{1h} + a_{1k} = M$ whenever $h + k = 2r$.

In all the cases mentioned in the preceding paragraph, A_1 is symmetrical in the sense that $a_{11} \in A_1$ implies that $M - a_{11} \in A_1$, and this ensures that the generating function of the $p(n_1: A_1)$ is a modular form. Rademacher's method then leads to a convergent series representation of $p(n_1: A_1)$. Grosswald [1] considered the case where M is any odd prime and A_1 is an arbitrary asymmetrical set. Then the above method cannot be applied and only asymptotic results are obtained.

2. Notation and definitions. Throughout this article, a, d, Δ, h, k, K, l, m, M, n, N, ν, q, r, ρ, s represent nonnegative integers and j is used for an integer greater than unity. C is a positive number, not necessarily the same at each occurrence, which may depend upon any j, M, e_i but not upon any n_1, x_1, y_1, θ_1, ξ_1, z_1. The numbers e_i are positive and to be thought of as small. The symbols \sim, $o(\)$ always refer to the passage of the n_j to infinity. The symbol $O(\)$ sometimes refers to the passage of the n_j to infinity and otherwise is obvious from the context. The total differential operator d/dt is always denoted by D and never by a prime. γ, $\zeta(\)$ represent respectively the Euler constant and the Riemann zeta function.

We write
\[f(x_1, \ldots, x_j) = f(x_1, \ldots, x_j; A_1, \ldots, A_j) \]

\[(2.1) \quad f(x_1, \ldots, x_j) = \prod_{\nu_1=0}^{\infty} \cdots \prod_{\nu_j=0}^{\infty} \prod_{h(1)=1}^{q(1)} \cdots \prod_{h(j)=1}^{q(j)} \left(1 - \exp \left(- \sum_{l=1}^{j} (M\nu_l + a_{th(l)})x_l \right) \right) \]

where \(\text{Re}(x_l) > 0 \) for \(1 < l < j \). Writing \(p(0, \ldots, 0) = 1 \) and \(p(n_1, \ldots, n_j) = p(n_1, \ldots, n_j; A_1, \ldots, A_j) \), we can easily verify that

\[(2.2) \quad f(x_1, \ldots, x_j) = \sum_{n_1=0}^{\infty} \cdots \sum_{n_j=0}^{\infty} p(n_1, \ldots, n_j) e^{-n_1x_1-\cdots-n_jx_j}. \]

We assume for convenience throughout this note that \(n_1 \leq \cdots \leq n_j \). The definition of \(p(n_1, \ldots, n_j) \) is such that this assumption involves no loss of generality in the asymptotic results obtained.

When \(|t| < 2\pi \), we have

\[(2.3) \quad te^{ct}(e^t - 1)^{-1} = \sum_{\nu=0}^{\infty} B_\nu(c) t^\nu/\nu! \]

for all \(c \), where the \(B_\nu(c)/\nu! \) are the Bernouilli polynomials in \(c \). From pp. 521–523 of Knopp [4], we see that, if we write \(P_1(t) = t - \lfloor t \rfloor - \frac{1}{2} \), then

\[P_1(t) = B_1(t) = -\sum_{\nu=1}^{\infty} (\nu\pi)^{-1} \sin 2\nu\pi t \]

for \(0 < t < 1 \), and if we write

\[P_{2\nu}(t) = 2(-1)^{\nu-1} \sum_{\nu=1}^{\infty} (2\nu\pi)^{-2\nu} \cos 2\nu\pi t, \]

\[P_{2\nu+1}(t) = 2(-1)^{\nu-1} \sum_{\nu=1}^{\infty} (2\nu\pi)^{-2\nu-1} \sin 2\nu\pi t \]

for all \(\nu \geq 1 \), then \(P_\nu(t)/\nu! \) for \(0 < t < 1 \). Clearly every \(P_\nu(t) \) is bounded, has period 1 and, for all \(\nu \geq 1 \), \(D^\nu P_\nu(t) = P_{\nu-1}(t) \). \(B_{2\nu}(0) \) for \(\nu \geq 1 \) are the Bernouilli numbers. For \(\nu \geq 1 \), \(B_{2\nu+1}(0) = 0 \) and \((2\pi)^{2\nu} B_{2\nu}(0) = 2(2\nu)!\zeta(2\nu) \).

We define

\[\Lambda(t) = \Lambda_{h(1) \cdots h(j)}(t; x_1, \ldots, x_j) = t^{-1} \prod_{l=1}^{j} (e^{Mx_l t} - 1)^{-1} e^{(M-a_{th(l)})x_l t} = t^{-1} \sum_{\nu_1=0}^{\infty} \cdots \sum_{\nu_j=0}^{\infty} \exp \left(-t \sum_{l=1}^{j} (M\nu_l + a_{th(l)})x_l \right), \]

\[F(x_1, \ldots, x_j) = \sum_{l=1}^{j} x_l + \sum_{l=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} \Lambda_{h(1) \cdots h(j)}(t; x_1, \ldots, x_j). \]
We put \(X = x_1 \cdots x_j \) and \(x^* \) for the \(x_j \) with maximum modulus, i.e. \(|x^*| = \max|x_j| \). Hence, for \(|l| < 2\pi/M|x^*|\), we obtain from (2.3)

\[
XM^{l+1} \Lambda(t) = \sum_{l=1}^{j} Mx_{l}^{i}(e^{Mx_{l}^{i}t} - 1)^{-1} e^{(M-a_{l}h(t))x_{l}^{i}t}
\]

(2.4)

\[
= \sum_{l=1}^{j} \sum_{\nu=0}^{\infty} B_{\nu} \left(\frac{1-a_{l}h(t)}{M} \right) \frac{(Mx_{l}^{i})^{\nu}}{\nu!} = \sum_{m=0}^{\infty} Q_{m}^{i}m^{m}T^{m+1}A_{0}(t) = \sum_{m=0}^{\infty} Q_{m}^{i}m^{m},
\]

where \(Q_{m}^{i} = Q_{m}(x_1, \ldots, x_j) \) are homogeneous polynomials of degree \(m \) in \(x_1, \ldots, x_j \). We write

\[
G(t) = XM^{l} \Lambda(t) - \sum_{m=0}^{\infty} Q_{m}^{i}m^{m-i-1}
\]

so that \(G(t) = \sum_{m=j+1}^{\infty} Q_{m}^{i}m^{m-i-1} \) whenever \(|l| < 2\pi/M|x^*|\), and we put

\[
H = H(x_1, \ldots, x_j)
\]

(2.5)

\[
= \int_{0}^{\infty} \left\{ XM^{l} \Lambda(t) - \sum_{m=0}^{j} Q_{m}^{i}m^{m-i-1} - Q_{j}^{i}(e^{t} - 1)^{-1} \right\} dt.
\]

We write \(z_{i} = x_{i}/x_{1} \) for \(1 \leq l \leq j \), \(Z = z_{2} \cdots z_{j} \) and

\[
U_{m}^{i} = U_{m}(z_1, \ldots, z_j) = M^{-m}Q_{m}^{i}(z_1, \ldots, z_j)
\]

for all \(m \geq 0 \). If we write

\[
\Omega(u) = \Omega(u; z_2, \ldots, z_j) = u^{-1} \prod_{l=1}^{j} (e^{Z_{l}^{i}u} - 1)^{-1} e^{(1-a_{l}h(t)/M)x_{l}^{i}u},
\]

then it follows from (2.4) that

\[
Zu^{j+1} \Omega(u) = \sum_{m=0}^{\infty} U_{m}^{i}u^{m}
\]

for \(|u| < 2\pi/|x^*|\), where \(z^* \) is the \(z_{i} \) with maximum modulus. Observing that

\[
\int_{0}^{\infty} \left\{ (e^{t} - 1)^{-1} - Mx_{1}^{i}(e^{Mx_{1}^{i}t} - 1)^{-1} \right\} dt
\]

\[
= [\log((1 - e^{-Mx_{1}^{i}t})^{-1}(1 - e^{-t}))]_{0}^{\infty} = \log Mx_{1}^{i},
\]

we substitute \(u = Mx_{1}^{i}t \) in (2.5) and an easy calculation gives

\[
H = XM^{l}I - Q_{j}^{i}\log Mx_{1}^{i},
\]

where
\[I = I(z_2, \ldots, z_j) = \int_0^\infty \beta(u; z_2, \ldots, z_j) \, du, \]

\[\beta(u; z_2, \ldots, z_j) = \Omega(u) - Z^{-1} \left\{ \sum_{m=0}^{\ell-1} U_m u^m - j^{-1} + U_j(u) - 1 \right\}. \]

For \(s \geq 1 \), let us write \(Z' = z_2 \cdots z_s \), \(Z'' = z_{s+1} \cdots z_j \) and, for all \(m \geq 0 \),

\[
\begin{align*}
V_m &= V_s(z_1, \ldots, z_s) = M^{-m} Q_m(z_1, \ldots, z_s), \\
W_m &= W_s(z_{s+1}, \ldots, z_j) = M^{-m} Q_m(z_{s+1}, \ldots, z_j).
\end{align*}
\]

We define

\[
\Omega'(u) = \Omega'(u; z_2, \ldots, z_s) = u^{-1} \prod_{i=1}^s (e^{i u} - 1)^{-1} e^{(1 - s_1(t) / M) z_i u},
\]

\[
\Omega''(u) = \Omega''(u; z_{s+1}, \ldots, z_j) = \prod_{i=s+1}^j (e^{i u} - 1)^{-1} e^{(1 - s_1(t) / M) z_i u},
\]

and so, for \(|u| < 2\pi/|z^*|\),

\[
Z'u^{s+1} \Omega'(u) = \sum_{m=0}^\infty V_m u^m, \quad Z''u^{j-s} \Omega''(u) = \sum_{m=0}^\infty W_m u^m.
\]

It follows that, for all \(m \geq 0 \),

\[
(2.7) \quad U_m = \sum_{r=0}^m V_r W_{m-r}.
\]

We define a generalization of the integral \(I \) by writing

\[
I_{sr} = I_{sr}'(z_2, \ldots, z_s) = \int_0^\infty \beta_{sr}'(u; z_2, \ldots, z_s) \, du,
\]

where, for \(r \geq j + 1 \),

\[
\beta_{sr}'(u; z_2, \ldots, z_s) = u^{r-s-j} \Omega'(u)
\]

and, for \(0 \leq r \leq j \),

\[
\beta_{sr}'(u; z_2, \ldots, z_s) = u^{r+s-j} \Omega'(u)
\]

\[
- Z^{-1} \left\{ \sum_{m=0}^{r-1} V_m u^{m+r-j-1} + V_{j-r}(e^{u} - 1)^{-1} \right\}.
\]

For \(1 \leq l \leq j \), we write

\[
x_l = y_l + i \theta_l = y_l(1 + i \xi_l),
\]
where \(y_i > 0 \). We put

\[
Y = y_1 \cdots y_j,
\]

\[
R_m = R_m(y_1, \ldots, y_j) = Q_m(y_1, \ldots, y_j),
\]

\[
\overline{Q}_m = \overline{Q}_m(x_1, \ldots, x_j) = \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} Q_m(x_1, \ldots, x_j),
\]

\[
R_m = R_m(y_1, \ldots, y_j) = \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} R_m(y_1, \ldots, y_j),
\]

\[
\overline{H} = \overline{H}(x_1, \ldots, x_j) = \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} H(x_1, \ldots, x_j).
\]

We let \(y_i \sim \mu_i \), where the \(\mu_i \) are defined by

\[
(2.8) \quad \mu_i = n_i^{-1}(M - \xi(j + 1)\overline{R}_0 n_1 \cdots n_j)^{1/(j+1)}.
\]

Since \(n_1 \leq \cdots \leq n_j \), clearly \(\mu_1 \geq \cdots \geq \mu_j \).

From (6.2), which we prove later, we can easily deduce that a positive integer \(\Delta \) can be found such that \(\Delta \) is the smallest integer for which \(\mu_1^{2\Delta + j - 1} = o(\mu_1 \cdots \mu_j) \). With this value of \(\Delta \), we define

\[
F^* (x_1, \ldots, x_j) = \sum_{l=1}^{j} n_k x_k
\]

\[
+ X^{-1}M^{-1} \left\{ \sum_{m=0, m \neq j}^{2\Delta + j - 1} \xi(j + 1 - m)\overline{Q}_m + \gamma \overline{R}_0 + \overline{H} \right\}.
\]

For \(1 \leq l \leq j \), we write \(d_l \) for the greatest common divisor \((M, a_{11} - a_{12}, \ldots, a_{11} - a_{1q(l)}) \). Then we define \(K = K(n_1, \ldots, n_j; \Lambda_1, \ldots, \Lambda_j) \) as the number of \(\nu \) in \(0 \leq \nu \leq M - 1 \) which satisfy the simultaneous congruences

\[
n_l \equiv \nu a_{1l} \pmod{d_l}, \quad 1 \leq l \leq j.
\]

Clearly, since \(d_l \) divides \(a_{11} - a_{1h(l)} \) for \(2 \leq h(l) \leq q(l), 1 \leq l \leq j \), these congruences are equivalent to \(n_l \equiv \nu a_{1h(l)} \pmod{d_l} \) for any set of \(h(1), \ldots, h(j) \). Finally, we write \(q = \overline{Q}_0 = \overline{R}_0 = q(1) \cdots q(j) \).

3. Statement and proof of the main result. Employing the definitions of the last section, we can now state our principal result.

Theorem 1. If, for \(1 \leq l \leq j \) \((j > 1) \), every \(n_l \) tends to infinity subject to the condition that

\[
n_1 \cdots n_j < \frac{n_j^{j+1}}{n_i} e_1
\]

for any fixed positive number \(e_1 \), then
\[p(n_1, \ldots, n_j) \sim Kd_1 \cdots d_{j-1}M^{-1}(j + 1)^{-\frac{N}{2}}(M/2\pi(j + 1)q)^{\frac{N}{2}} \]
\[\times Y^{\frac{N}{2}(j+2)}e^{-F*'(y_1, \ldots, y_j)}, \]

where the \(y_i \) are functions of \(\mu_1, \ldots, \mu_j \) such that \(y_i \sim \mu_i \) and

\[y_i \partial F^*(y_1, \ldots, y_j)/\partial y_i = o((\mu_1 \cdots \mu_j)^{-\frac{N}{2} + \epsilon_2}) \]

for \(1 < i < j \) and any fixed positive number \(\epsilon_2 \).

Proof. First we choose \(\epsilon_2 \) to satisfy

\[0 < 2(j + 1)\epsilon_2 < \epsilon_1, \]

an inequality which will be used in the proof of Lemma 4. Next, we define \(\eta \) and \(\chi \) by

\[\eta = (\mu_1 \cdots \mu_j)^{-\frac{N}{2} - \epsilon_2}, \quad \chi = \eta(Y^{-1}M^{-1}\zeta(j + 1)\overline{F}_0)^{\frac{N}{2}} \sim C(n_1 \cdots n_j)^{\epsilon_2(j + 1)} \]

From (2.2), we obtain

\[p(n_1, \ldots, n_j) \]
\[= (2\pi)^{-j}\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} e^{\epsilon x_1 + \cdots + \epsilon x_j} + \log f(x_1, \ldots, x_j) \, d\theta_1 \cdots d\theta_j. \]

Now, from (2.1),

\[\log f(x_1, \ldots, x_j) = \sum_{\nu_1=0}^{\infty} \cdots \sum_{\nu_j=0}^{\infty} \sum_{h(1)=1}^{q(1)} \]
\[\cdots \sum_{h(j)=1}^{q(j)} \sum_{r=1}^{\infty} r^{-1} \exp \left(-r \sum_{l=1}^{j} (Mv_l + a_{lh(l)}x_l) \right) \]
\[= \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} \Lambda_{h(1) \cdots h(j)}(r; x_1, \ldots, x_j) \]

and so,

\[p(n_1, \ldots, n_j) = (2\pi)^{-j}\int_{-\pi/M}^{\pi/M} \cdots \int_{-\pi/M}^{\pi/M} g(x_1, \ldots, x_j) \, d\theta_1 \cdots d\theta_j, \]

where, for \(\omega = e^{2\pi i/M} \),
In order to prove Theorem 1, we require an asymptotic expansion for the logarithm of the generating function \(f(x_1, \ldots, x_j) \). The following result, which is of interest in itself, will be proved in §5.

Theorem 2. When \(|\arg x_1| < \frac{1}{2\pi} - \varepsilon_3 \) for \(1 \leq l \leq j \),

\[
2k+1-1 \sum_{m=0; m \neq j} Z(j + 1 - m)\overline{Q}_m + \gamma \overline{Q}_j + H + O(x^{2k+j})
\]

as \(x^* \to 0 \).

We also require the following lemmas.

Lemma 1. An equivalence relation is defined on \(\{(s_1, \ldots, s_j): 0 < s_i < M - 1 \text{ for } 1 \leq i \leq j\} \) by setting \((s_1, \ldots, s_j) \) equivalent to \((s_1', \ldots, s_j') \) whenever \(\sum_{i=1}^j a_{ih(i)}s_i \equiv \sum_{i=1}^j a_{ih(i)}s_i' \pmod{M} \) for all \(h(1), \ldots, h(j) \). Then

\[
g(x_1, \ldots, x_j) = e^{n_1 x_1 + \cdots + n_j x_j} \sum_{s_1=0}^{M-1} \cdots \sum_{s_j=0}^{M-1} \omega^{n_1 s_1 + \cdots + n_j s_j}
\]

\[
\times \exp \left\{ \sum_{r=1}^{q(1)} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(l)} \Lambda_{h(1) \cdots h(j)}(r; x_1, \ldots, x_j) \right\}
\]

\[
\times \omega^{-r\sum_{i=1}^{l} a_{ih(i)}s_i^*}
\]

where the sum \(\sum^* \) is taken over a complete set of representatives of the equivalence classes.

Lemma 2. If \(\sum_{i=1}^j |\xi_i| > \eta \) and every \(|\theta_i| \leq \eta/M \), then

\[
g(x_1, \ldots, x_j) = O(\exp(F(y_1, \ldots, y_j) - C\chi^2)).
\]

Lemma 3. If \(\sum_{i=1}^j |\xi_i| \leq \eta \), then
\[
\sum_{\omega} n_1^{s_1} \cdots + n_j^{s_j} \exp \left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} \Lambda h(1) \cdots h(j) (r; x_1, \ldots, x_j) \right. \\
\left. \times \omega^{-r \sum_{i=1}^{j} a_{li}(l)^{s_i}} \right\} \\
= O \left\{ \exp \left(F(y_1, \ldots, y_j) - \sum_{l=1}^{j} n_{y_l} - C(\mu_1 \cdots \mu_j)^{-1} \right) \right\},
\]

where the sum \(\Sigma^{(*)}\) is taken over the same set as \(\Sigma^*\) except that the term corresponding to the equivalence class where every \(\Sigma_i a_{li}(l)^{s_i} \equiv 0 \pmod{M}\) is omitted.

Lemma 4. If \(\Sigma_i |\xi_i| \leq \eta\), then

\[
F(x_1, \ldots, x_j) = F^*(y_1, \ldots, y_j)
\]

\[
- Y^{-1} M^{-1} \sum_{l=1}^{j} \xi_l^2 + \sum_{l=1}^{j-1} \sum_{m=l+1}^{j} \xi_l \xi_m + o(1).
\]

Lemma 5. It is always possible to choose \(y_1, \ldots, y_j\) so that \(y_i \sim \mu_i\) and (3.2) holds for \(1 \leq l \leq j\).

From (3.5), (3.6) and Lemma 1, it follows that

\[
M(2\pi)^{p(n_1, \ldots, n_j)}
\]

\[
\frac{Kd_1 \cdots d_j}{M^{1/2}}
\]

\[
= \int_{-\pi/M}^{\pi/M} \cdots \int_{-\pi/M}^{\pi/M} e^{-\frac{1}{2} x_1^2 + \cdots + n_j x_j} \sum_{\omega} n_1^{s_1} \cdots + n_j^{s_j} \exp \left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(j)=1}^{q(j)} \Lambda h(1) \cdots h(j) (r; x_1, \ldots, x_j) \right. \\
\left. \times \omega^{-r \sum_{i=1}^{j} a_{li}(l)^{s_i}} \right\} d\theta_1 \cdots d\theta_j
\]

and, by Lemmas 2 and 3, this is equal to

\[
\int_{\Sigma |\xi_i| \leq \eta} e^{F(x_1, \ldots, x_j)} d\theta_1 \cdots d\theta_j + O\left\{ e^{F(y_1, \ldots, y_j) - Cx^2} \right\}
\]

\[
+ O(\eta e^{F(y_1, \ldots, y_j) - C/\mu_1 \cdots \mu_j}).
\]

By Lemma 4, the latter integral is asymptotic to
\[Y e^{F^*(y_1, \ldots, y_j)} \int_{l}^{j+1} \int \exp \left\{-M^{-1}lM^{-1} + 1\right\} d\xi \times \left(\sum_{l=1}^{j} \xi_{l}^2 + \sum_{l=1}^{j} \sum_{m=l+1}^{j} \xi_{l} \xi_{m} \right) d\xi_{1} \cdots d\xi_{j}. \]

If we transform the variables in this integral by writing
\[\xi_{l} = \left\{ Ml / \xi (j + 1) R_0 \right\}^{1/2}, \quad \text{for} \ 1 \leq l \leq j, \]
we obtain
\[M(2\pi)^{j/2} \prod_{i=1}^{j} d\gamma_i \sim \left\{ Ml / \xi (j + 1) R_0 \right\}^{1/2} \]
\[\times \exp \left(-\sum \gamma_i^2 - \sum \gamma_i \gamma_m \right) d\gamma_{1} \cdots d\gamma_{j}. \]

Since the integrand is positive everywhere,
\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} < \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left(-\sum \gamma_i^2 - \sum \gamma_i \gamma_m \right) d\gamma_{1} \cdots d\gamma_{j} \]
and so, by Lemma 4 of [10],
\[p(n_1, \ldots, n_j) \sim Kd_1 \cdots d_j M^{-1} j + 1 \right\} R_0 \right\}^{1/2} \]
\[\times \left\{ Ml / \xi (j + 1) R_0 \right\}^{1/2} \]
Theorem 1 follows from this and Lemma 5.

In order to examine \(F^*(y_1, \ldots, y_j) \) more precisely, it is necessary to investigate \(I \) and, for this purpose, we require two further lemmas.

Lemma 6. If \(g(t) \) and all its derivatives are continuous in \(0 \leq t \leq 1 \), then, for any \(\tau \) satisfying \(0 < \tau < 1 \),
\[g(\tau) = \int_{0}^{1} g(t) dt + \sum_{r=1}^{k} P_{r}(\tau) [D^{r-1}g(1) - D^{r-1}g(0)] - \sigma_k \]
for all \(k \geq 1 \), where
\[\sigma_k = \int_{0}^{1} P_{k}(\tau - t) D^k g(t) dt. \]
Proof. For $r > 1$, $P_r(t)$ is continuous, $DP_r(t - t) = -P_{r-1}(t - t)$ and $P_r(1 - 1) = P_r(1)$. Therefore, by integration by parts,

$$\sigma_r = P_r(1)(D^{r-1}g(1) - D^{r-1}g(0)) + \sigma_{r-1}$$

for all $r > 1$. Also, $P_1(-0) - P_1(+0) = 1$, $DP_1(t - t) = -1$ for all $t \neq 1$ and $P_1(1 - 1) = P_1(1)$.

Now,

$$\int_0^1 DP_1(t - t)g(t)\,dt = P_1(+0)g(1) - P_1(0)g(0) - \int_0^1 P_1(t - t)Dg(t)\,dt,$$

$$\int_0^1 DP_1(t - t)g(t)\,dt = P_1(1)g(1) - P_1(0)g(0) - \int_0^1 P_1(t - t)Dg(t)\,dt$$

and so,

$$g(1) - \int_0^1 g(t)\,dt = (P_1(-0) - P_1(+0))g(1) + \int_0^1 DP_1(t - t)g(t)\,dt
\begin{equation}
= P_1(1)(g(1) - g(0)) - \int_0^1 P_1(t - t)Dg(t)\,dt.
\end{equation}$$

The lemma follows easily from (3.7).

Corollary. For $|\arg v| < \frac{\pi}{2} - \epsilon_4$, $0 \leq t < 1$, and any fixed positive integer $k \geq 2$,

$$v^\tau v(e^v - 1)^{-1} = 1 + \sum_{r=1}^{k-1} P_r(v)\nu^r + O(v^k)$$

where the constant implied in the order term depends upon τ, k but is independent of v.

Proof. For $0 < \tau < 1$, putting $g(t) = v^\tau$ in Lemma 6, we obtain

$$v^\tau = v^{-1}(e^v - 1) + \sum_{r=1}^{k} P_r(v)\nu^{r-1}(e^v - 1) - \nu^k\int_0^1 P_k(t - t)e^{\nu t}\,dt.$$

Since $v(e^{Re(v)} - 1)/(e^v - 1)Re(v)$ is bounded, it follows that

$$v^\tau v(e^v - 1)^{-1} = 1 + \sum_{r=1}^{k-1} P_r(v)\nu^r + O(v^k).$$

It is well known that this formula also holds for $\tau = 0$. (See, for example, [4, pp. 534–535].)

Lemma 7. If $|\arg z| < \frac{\pi}{2} - \epsilon_5$ for $2 \leq i \leq j$, then

$$Z^\nu I(z_2, \ldots, z_j) = \sum_{r=0}^{k-1} I'_{sr} W_r + \sum_{r=k}^{(j-s)k} O(I'_{sr} z^r)$$

for all $k > j$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
PROOF. From (2.7) and the preceding corollary,

\[
\beta(u; z_2, \ldots, z_s) = Z^{n-1}u^{l-1} \prod_{i=1}^{s} (e^{x_i u} - 1)^{-1} e^{(1-a \lambda(t)/M)x_i u} \\
\times \left\{ \sum_{r=0}^{k-1} W_r u^r + \sum_{r=k}^{(j-s)k} O(e^{nu u}) \right\} \\
- Z^{-1} \left\{ \sum_{m=0}^{l-1} \sum_{r=0}^{m} V_r W_{m-r} u^{m-l-1} + \sum_{r=0}^{j} V_r W_{j-r}(e^u - 1)^{-1} \right\} \\
= Z^{n-1} \left\{ \sum_{r=0}^{k-1} \beta_{sr}(u; z_2, \ldots, z_s) W_r \\
+ \sum_{r=k}^{(j-s)k} O(\beta_{sr}(u; z_2, \ldots, z_s)e^{nu}) \right\}.
\]

The lemma follows by integration over \(u \) from 0 to \(\infty \).

Since \(e^u - 1 \geq \frac{1}{u^m} \) for all positive \(t \) and all positive integers \(m \), we have, for all \(r \geq j + 1 \),

\[
\beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) = O(y_1^2(y_1 \cdots y_s)^{-1})
\]

for \(0 \leq u \leq \frac{\pi}{2} \) and

\[
\beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) = O(y_1^2(y_1 \cdots y_s)^{-1} u^{-2})
\]

for \(u \geq \frac{\pi}{2} \). It follows that, for all \(r \geq j + 1 \),

\[
\beta_{sr}(y_2/y_1, \ldots, y_s/y_1) = O(y_1^2(\mu_1 \cdots \mu_s)^{-1}).
\]

From (2.4),

\[
\sum_{m=0}^{\infty} V_m \left(\begin{array}{c} y_2/y_1, \ldots, y_s/y_1 \end{array} \right) u^m
\]

\[
= \prod_{i=1}^{s} (e^{uy_i/y_1} - 1)^{-1} e^{(1-a \lambda(t)/M)uy_i/y_1} uy_i/y_1
\]

and so,

\[
|V_m(1, y_2/y_1, \ldots, y_s/y_1)|u^m \leq e^{\pi} \left\{ 1 + \frac{\pi}{2} + \sum_{\nu=1}^{\infty} B_{2\nu}(0)\pi^{2\nu}/(2\nu)! \right\} = C.
\]

Therefore, for \(0 \leq r < j \) and \(0 \leq u \leq \frac{\pi}{2} \),
\[\beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) = y_1^s(y_1 \cdots y_s)^{-1} \left\{ V_{1-r} \left(y_2/y_1, \ldots, y_s/y_1 \right) u^{-1} - (e^u - 1)^{-1} \right\} + \sum_{m=1-r+1}^\infty V_m \left(y_2/y_1, \ldots, y_s/y_1 \right) u^{m+r-1} \]

and so,

\[\int_0^{\beta_{sr}} \beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) \, du = O\left(y_1^s(y_1 \cdots y_s)^{-1} \sum_{m=0}^\infty 2^{-m} \right) = O(\mu_1^s(\mu_1 \cdots \mu_s)^{-1}). \]

Also, for \(0 < r < j\) and \(u > \frac{\pi}{2}\),

\[\beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) = O(y_1^s(y_1 \cdots y_s)^{-1} u^{-2}) \]

and so,

\[\int_{\frac{\pi}{2}}^{\infty} \beta_{sr}(u; y_2/y_1, \ldots, y_s/y_1) \, du = O(\mu_1^s(\mu_1 \cdots \mu_s)^{-1}). \]

Hence, for \(0 < r < j\),

\[I_{sr}(y_2/y_1, \ldots, y_s/y_1) = O(\mu_1^s(\mu_1 \cdots \mu_s)^{-1}). \]

Now, if \(\mu_{s+1}, \ldots, \mu_j\) are each \(O(\mu_1^{1+\epsilon_6})\) for some fixed positive number \(\epsilon_6\) but none of \(\mu_2, \ldots, \mu_s\) is \(O(\mu_1^{1+\epsilon_7})\) for any fixed positive number \(\epsilon_7\), then it follows from Lemma 7 that

\[I \left(\frac{y_2}{y_1}, \ldots, \frac{y_s}{y_1} \right) = y_1^{s-k} y_{s+1} \cdots y_j)^{-1} \sum_{r=0}^{k-1} I_{sr} \left(\frac{y_2}{y_1}, \ldots, \frac{y_s}{y_1} \right) \]

\[\times (M_{y_1})^{-r} Q_{r}(y_{s+1}, \ldots, y_j) + O(\mu_1^{s-k}(\mu_1 \cdots \mu_j)^{-1} \mu_{s+1}^k). \]

If \(k\) is chosen so that \(\mu_1^{s-k}(\mu_1 \cdots \mu_j)^{-1} \mu_{s+1}^k = o(1)\), then the expression for \(I\) given in (3.8) may be used to calculate \(F^*(y_1, \ldots, y_j)\) in Theorem 1.

4. Proofs of the first three lemmas.

Proof of Lemma 1. It is easily verified that the relation is an equivalence relation. We observe that the final exponential expression in (3.6) is the same for all \((e_1, \ldots, e_j)\) for which the sums \(\sum_{i=1}^j e_i\) are congruent modulo \(M\) for all \(h(1), \ldots, h(j)\). To evaluate \(g(x_1, \ldots, x_j)\) therefore, we first compute the
sums $\Sigma' \omega_{s_1^1 + \ldots + s_j^j}^n$, where each sum Σ' is taken over all the (s_1, \ldots, s_j) for which $\Sigma_{a_h(t)} s_i \equiv \rho_{h(1) \ldots h(j)} \pmod{M}$ for all $h(1), \ldots, h(j)$ and the $\rho_{h(1) \ldots h(j)}$ are nonnegative integers less than M.

For any particular set of $\rho_{h(1) \ldots h(j)}$, for which there is no (s_1, \ldots, s_j) such that $\Sigma_{a_h(t)} s_i \equiv \rho_{h(1) \ldots h(j)} \pmod{M}$ for all $h(1), \ldots, h(j)$, then clearly the sum is zero. Otherwise, there is at least one (s_1, \ldots, s_j), say (s_1^*, \ldots, s_j^*), such that $\Sigma_{a_h(t)} s_i \equiv \rho_{h(1) \ldots h(j)} \pmod{M}$ for all $h(1), \ldots, h(j)$. It follows that, for any (s_1, \ldots, s_j) for which $\Sigma_{a_h(t)} s_i \equiv \rho_{h(1) \ldots h(j)} \pmod{M}$ for all $h(1), \ldots, h(j)$, then $\Sigma_{a_h(t)} (s_i - s_i^*) \equiv 0 \pmod{M}$ for all $h(1), \ldots, h(j)$. These congruences are equivalent to the $j + 1$ congruences $\Sigma_{a_h(t)} (s_i - s_i^*) \equiv 0 \pmod{M}$ and $d_h(s_h - s_h^*) \equiv 0 \pmod{M}$ for $1 \leq h \leq j$. Hence, in this case,

$$\sum' \omega_{s_1^1 + \ldots + s_j^j} = \omega_{s_1^1 + \ldots + s_j^j} \sum_{s_1 = 0}^{d_1 - 1} \ldots \sum_{s_j = 0}^{d_j - 1} \omega_{M(n_1 s_1^1/d_1 + \ldots + n_j s_j^j/d_j)} \sum_{s_1 = 0}^{d_1 - 1} \ldots \sum_{s_j = 0}^{d_j - 1} \omega_{M(n_1 s_1^1/d_1 + \ldots + n_j s_j^j/d_j)}$$

$$\times M^{-1} \sum_{\nu = 0}^{M - 1} \omega_{M s_1^1/d_1}$$

$$= \omega_{s_1^1 + \ldots + s_j^j} M^{-1} \sum_{\nu = 0}^{M - 1} \omega_{M s_1^1/d_1}$$

$$\times \sum_{s_1 = 0}^{d_1 - 1} \omega_{M s_1^1/d_1}$$

$$= \omega_{s_1^1 + \ldots + s_j^j} M^{-1} d_1 \cdots d_K.$$

Lemma 1 follows immediately.

Proof of Lemma 2. At least one ξ_t satisfies $|\xi_t| > \nu/t$. Then

$$|e^{Mx_t} - 1|^2 = e^{2M^t} 1 + 2e^{M^t} \cos M^t \xi_t$$

$$= (e^{M^t} - 1)^2 + 4e^{M^t} \sin^2 \theta \theta \geq (e^{M^t} - 1)^2 (1 + C \eta^2)$$

for $|\theta| < \pi/M$. Hence, for any $h(1), \ldots, h(j)$,

$$|\Lambda_{h(1) \ldots h(j)}(1; x_1, \ldots, x_j)| \leq (1 - C \eta^2)\Lambda_{h(1) \ldots h(j)}(1; y_1, \ldots, y_j).$$
Also, for all \(r > 1 \) and any \(h(1), \ldots, h(f) \),

\[
|\Lambda_{h(1) \ldots h(f)}(r; x_1, \ldots, x_j)| \leq \Lambda_{h(1) \ldots h(f)}(r; y_1, \ldots, y_j)
\]

and so, from (3.6),

\[
|g(x_1, \ldots, x_j)| \leq C \exp\{F(y_1, \ldots, y_j) - Cx^2\}.
\]

Proof of Lemma 3. Each of the terms in \(\Sigma^* \) has at least one of the sums \(\frac{\eta_{ih(1)}x_i^*}{1} \equiv 0 \) (mod \(M \)). Then, for some \(h(1), \ldots, h(f) \), \(\frac{\eta_{ih(1)}x_i^*}{1} \equiv 0 \) (mod \(M \)). Therefore,

\[
\Lambda_{h(1) \ldots h(f)}(1; x_1, \ldots, x_j) = \Lambda_{h(1) \ldots h(f)}(1; y_1, \ldots, y_j) \{1 + O(\eta)\} (\cos 2\pi p/M - i \sin 2\pi p/M).
\]

It follows that

\[
\left| \exp\left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(f)=1}^{q(f)} \Lambda_{h(1) \ldots h(f)}(r; x_1, \ldots, x_j) e^{-r\sum_{h=1}^{f}} \right\} \right|
\]

\[
= \exp \Re\left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(f)=1}^{q(f)} \Lambda_{h(1) \ldots h(f)}(r; x_1, \ldots, x_j) e^{-r\sum_{h=1}^{f}} \right\}
\]

\[
\leq \exp\left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(f)=1}^{q(f)} \Lambda_{h(1) \ldots h(f)}(r; y_1, \ldots, y_j)
\]

\[
- Y^{-1}(1 - \cos 2\pi p/M)\{1 + O(\eta) + O(\mu,k)\} \right\}
\]

\[
\leq \exp\left\{ \sum_{r=1}^{\infty} \sum_{h(1)=1}^{q(1)} \cdots \sum_{h(f)=1}^{q(f)} \Lambda_{h(1) \ldots h(f)}(r; y_1, \ldots, y_j) - CY^{-1} \right\}.
\]

Lemma 3 follows immediately.

5. **Proof of Theorem 2.** In order to prove Theorem 2, we first establish the following lemma.

Lemma 8. As \(t \to \infty \) through real positive values, \(D^k G(t) \to 0 \) for all \(k \geq 0 \) and, for all \(k \geq 1 \),

\[
\int_0^\infty |D^k G(t)| dt = O(x^{\epsilon_j+k}).
\]

Proof. Obviously \(G(t) \to 0 \) as \(t \to \infty \). Let \(t_0 = \frac{\pi}{2} n/M|x^*| \). Now

\[
D^k \Sigma^0 Q_m r^{m-l-1} \to 0 \text{ as } t \to \infty \text{ and}
\]
\[
\int_{t_0}^{\infty} \left| D^k \sum_{m=0}^{j} Q_m t^{m-j-1} \right| dt \\
\leq \int_{t_0}^{\infty} \sum_{m=0}^{j} |Q_m| (j + 1 - m) \cdots (j + k - m) t^{m-j-k-1} dt \\
= \sum_{m=0}^{j} |Q_m| (j + 1 - m) \cdots (j + k - 1 - m) t_0^{m-j-k} = O(x^j + k).
\]

Since
\[
D\left((e^{Mx t} - 1)^{-1}\right) = -Mx_i \left((e^{Mx t} - 1)^{-1} + (e^{Mx t} - 1)^{-2}\right),
\]
we see that \(D^k \Lambda(t)\) is the sum of a finite number of terms of the form
\[
C t^{-a-1} \prod_{i=1}^{j} (Mx_i)^{r_i} \left((M - a_{th(i)})x_i \right) s_i (e^{Mx t} - 1)^{-\rho_i-1},
\]
where \(a > 0, r_i > \rho_i > 0, s_i > 0, a + \sum (r_i + s_i) = k\). Hence, \(D^k \Lambda(t) \to 0\) as \(t \to \infty\) and \(\int_{t_0}^{\infty} |D^k \Lambda(t)| dt\) is dominated by the sum of a finite number of terms of the form
\[
C(x^*| \sum (r_i + s_i - \rho_i)) x^* |^{j+a+\sum \rho_i} = O(x^j + k).
\]

Therefore, \(D^k G(t) \to 0\) as \(t \to \infty\) and \(\int_{t_0}^{\infty} |D^k G(t)| dt = O(x^j + k)\).

By substituting \(t = \pi |Mx^*| \) in (2.4), we obtain
\[
\sum_{m=0}^{\infty} |Q_m| (\pi |Mx^*|)^m \leq \sum_{l=1}^{j} e^{\frac{\pi}{l}} \left(1 + \frac{\pi}{2} + \sum_{n=1}^{l} B_{2n}(0)^{n^2} / (2n)\right) = C
\]
and so, \(|Q_m| \leq C(Mx^*| |n^m|\). Now, for \(0 \leq t \leq t_0\),
\[
|D^k G(t)| \leq \sum_{m=j+k+1}^{\infty} (m - j - 1) \cdots (m - j - k) |Q_m| t^{m-j-k-1}
\]
and hence,
\[\int_0^t |D^k G(t)| \, dt \leq C \sum_{m=j+k+1}^{\infty} (m-j-1) \cdots (m-j-k+1) 2^{j+k-m} |x^j|^{j+k} = O(x^j). \]

This completes the proof of the lemma.

Proof of Theorem 2. For any positive integer \(N \), we have

\[\int_0^N P_1(t)D^2(t) \, dt = \sum_{r=0}^{N-1} \int_0^1 (t - \frac{r}{N})D^2(t + r) \, dt \]

(5.1) \[= \frac{1}{2} \{ G(0) + G(N) \} + \sum_{r=1}^{N-1} G(r) - \int_0^N G(t) \, dt. \]

By repeated integration by parts, Lemma 8 shows that

\[\int_0^N P_1(t)D^2(t) \, dt = \sum_{s=1}^{2k} (-1)^s P_{s+1}(0)D^s G(0) + \sum_{s=1}^{2k+1} (-1)^s B_{2s}(0)Q_{2s+j} \]

(5.2) \[= \sum_{s=1}^{k-1} (-1)^s B_{2s}(0)Q_{2s+j} + O(x^{2k+j}). \]

Now,

\[\sum_{r=1}^{N-1} G(r) - \int_0^N G(t) \, dt = A_1 + A_2 + A_3, \]

where

\[A_1 = \sum_{r=1}^{N-1} \{ G(r) + Q_j(r) \}, \]

\[A_2 = Q_j \left\{ \int_0^N (t^{-1} - (e^t - 1)^{-1}) \, dt - \sum_{r=1}^{N-1} r^{-1} \right\}, \]

\[A_3 = -\int_0^N \{ G(t) + Q_j(t^{-1} - (e^t - 1)^{-1}) \} \, dt. \]

As \(N \to \infty \),

\[A_1 \to XM^{j} \sum_{r=1}^{\infty} \Lambda(r) - \sum_{m=0}^{j-1} \frac{\Lambda(j+1-m)}{m} Q_m, \]

\[A_2 = Q_j \left\{ \log N - \log(1 - \frac{1}{e^N}) - \sum_{r=1}^{N-1} r^{-1} \right\} \to -\gamma Q_j, \]

\[A_3 \to -\int_0^\infty \{ G(t) + Q_j(t^{-1} - (e^t - 1)^{-1}) \} \, dt = -H. \]
Therefore, letting \(N \to \infty \) in (5.1), we obtain
\[
\int_0^\infty P_1(t)DG(t)\,dt = XM^j \sum_{r=1}^\infty \Lambda(r) - \sum_{m=0}^{j-1} \xi(j + 1 - m)Q_m - \gamma Q_j + \frac{1}{2}Q_{j+1} - H,
\]
and Theorem 2 follows from (3.4) and (5.2) since \(\xi(0) = -\frac{1}{2} \) and \(\xi(-2s) = 0, \xi(1 - 2s) = (-1)^sB_{2s}(0)/2s \) for all positive integers \(s \).

6. Proof of Lemma 4. We define the linear operator \(T \) by
\[
Tf(x_1, \ldots, x_j) = h(x_1, \ldots, x_j) - h(y_1, \ldots, y_j)
\]
\[
- \sum_{i=1}^j \partial h/\partial y_i(y_1, \ldots, y_j),
\]
where \(h(x_1, \ldots, x_j) \) is any function of \(x_1, \ldots, x_j \) with continuous first order partial derivatives. First we prove that
\[
(6.1) TF^*(x_1, \ldots, x_j) = - Y^{-1}M^{-1}\xi(j + 1)\bar{T}_0 \left(\sum_{i=1}^j \xi_i^2 + \sum_{m=1}^{j-1} \sum_{m=j+1}^j \xi_i \xi_m \right) + o(1).
\]
Trivial calculations show that
\[
T \left(\sum_{i=1}^j n_i x_i \right) = 0,
\]
\[
T(X^{-1}) = - Y^{-1} \left(\sum_{i=1}^j \xi_i^2 + \sum_{m=1}^{j-1} \sum_{m=j+1}^j \xi_i \xi_m \right) + O(\eta^3 Y^{-1}),
\]
\[
T(X^{-1}Q_m \log x_1) = O(\eta^2 Y^{-1}R_m \log y_1)
\]
and, for all \(m > 0 \),
\[
T(X^{-1}Q_m) = O(\eta^2 Y^{-1}R_m).
\]
Now
\[
\eta^3 Y^{-1} = O((\mu_1 \cdots \mu_j)^{3/2 - 3\varepsilon_2}) = o(1).
\]
From (3.1), \(n_1^{j} \leq n_1 \cdots n_j < n_1^{j+1 - \varepsilon_1}, n_j < n_1^{2 - \varepsilon_1} \), and therefore it follows from (2.8) that
\[
C n_1^{-1 + \varepsilon_1/(j+1)} < \mu_j < C n_1^{-\varepsilon_1/(j+1)}.
\]
Hence, we have
\[
\mu_j < \mu_1 < \mu_j^{\varepsilon_1/(j+1)}, \quad \log \mu_j = O(\log \mu_1).
\]
Also, \(\eta^2 Y^{-1}|R_j|\log y_1 | \) and \(\eta^2 Y^{-1}|R_m| \) for all \(m > 0 \) are each less than
PARTITIONS OF LARGE MULTIPARTITES WITH CONGRUENCE CONDITIONS 317

\[C_{\mu}(\mu_1 \cdots \mu_j)^{-2\epsilon_2} = C_{n_1}^{-1}(n_1 \cdots n_j)^{(1+2\epsilon_2)/(\gamma+1)} \]

\[< C_{n_1}^{2\epsilon_2 - \epsilon_1(1+2\epsilon_2)/(\gamma+1)} = o(1) \]

by (3.3). We have, therefore,

\[T(X^{-1}) = -Y^{-1} \left(\sum_{l=1}^{j} \xi_l^2 + \sum_{l=1}^{j-1} \sum_{m=l+1}^{j} \xi_l \xi_m \right) + o(1), \]

\[T(X^{-1}Q_j \log x_1) = o(1) \]

and, for all \(m > 0 \), \(T(X^{-1}Q_m) = o(1) \).

If we write \(\Gamma(t) = h(y_1(1 + i\xi_1 t), \ldots, y_j(1 + i\xi_j t)) \), where \(h(x_1, \ldots, x_j) \) has continuous second order partial derivatives, then Taylor's theorem gives

\[\Gamma(1) = \Gamma(0) + D\Gamma(0) + \frac{1}{2}D^2\Gamma(\psi) \]

for some \(\psi \) which satisfies \(0 < \psi < 1 \). It follows that

\[T(h(x_1, \ldots, x_j)) \]

\[= -\frac{1}{2} \sum_{l=1}^{j} \sum_{m=1}^{j} \xi_l \xi_m y_l y_m \frac{\partial^2 h}{\partial x_l \partial x_m} \{ y_1(1 + i\xi_1 \psi), \ldots, y_j(1 + i\xi_j \psi) \}. \]

For all \(l > 1 \), routine calculations give

\[\frac{\partial^2 \Omega(u)}{\partial x_l^2} = \Omega(u)\{(a_{l,l}(u)u/Mx_1 + u/x_1(e^{x_Iu} - 1))^2 + u^2e^{x_Iu}/x_1^2(e^{x_Iu} - 1)^2\}, \]

with similar expressions for the other second order partial derivatives. Since \(e^t - 1 > t/r! \) for all positive \(t \) and all positive integers \(r \), we have

\[T\Omega(u) = O(\eta^2 \mu_1(\mu_1 \cdots \mu_j)^{-1}u^{-l-1}) \]

and so,

\[T\left\{ \int_{\frac{\pi}{2}}^{\pi} \Omega(u) \, du \right\} = O(\eta^2 \mu_1(\mu_1 \cdots \mu_j)). \]

If we substitute \(t = \pi/My_1 \) in (2.4), we obtain

\[\sum_{m=0}^{\infty} R_m^{*}(\pi/My_1)^{\gamma} \leq e^{\pi}\left\{ 1 + \frac{\pi}{2} + \sum_{\nu=1}^{\infty} B_{2\nu}(0)\pi^{2\nu}/(2\nu)! \right\}' = C, \]

where \(R_m^{*} \) is written for the sum of the moduli of the monomials of which the polynomial \(R_m = Q_m(y_1, \ldots, y_j) \) is composed. Therefore, for all \(m > 0 \),
Since $Z^{-1}U_m$ is a sum of monomials of the form $CM^{-m}\Pi_{r=1}^{l}(x_{j}/x_{1})^{r-1}$, where $\Sigma r_{j} = m$ and

$$\sum_{l=1}^{l} \sum_{m=1}^{l} x_{j}^{m} \frac{\partial^{2}}{\partial x_{1} \partial x_{m}} \left\{ \prod_{i=1}^{l} \left(\frac{x_{j}}{x_{1}} \right)^{r-1} \right\} \leq \beta^{2} m^{2} \prod_{l=1}^{l} \left(\frac{x_{j}}{x_{1}} \right)^{r-1},$$

it follows that

$$|T(Z^{-1}U_m)| \leq C\eta^{2}m^{2}M^{-m}Y^{-1}R_{m}^{*}y_{1}^{-m} \leq C\eta^{2}m^{2}n^{-m}y_{1}^{-l}Y^{-1}.$$

We can immediately deduce that

$$T \left(\int_{\frac{\pi}{2n}}^{\frac{\pi}{2n}} Z^{-1} \left\{ \sum_{m=0}^{m} U_{m} u^{m-l-1} + U_{l}(e^{u}-1)^{-1} \right\} du \right) = O\left(\frac{\eta^{2}\mu_{l}}{\mu_{1} \cdots \mu_{j}} \right).$$

Also, since for $0 < u < \frac{\pi}{2n}$

$$\beta(u; z_{2}, \ldots, z_{j}) = Z^{-1} \left\{ \sum_{m=j+1}^{\infty} U_{m} u^{m-l-1} + U_{l}(u^{-1} - (e^{u} - 1)^{-1}) \right\},$$

we deduce that

$$T \left(\int_{0}^{\frac{\pi}{2n}} \beta(u; z_{2}, \ldots, z_{j}) du \right) = O\left(\eta^{2}y_{1}^{l}Y^{-1} \sum_{m=0}^{\infty} m^{2}2^{-m} \right) = O(\eta^{2}\mu_{l}^{j}/\mu_{1} \cdots \mu_{j}).$$

Combining the results of the last two paragraphs, we have

$$T(l) = O(\eta^{2}\mu_{l}^{j}/\mu_{1} \cdots \mu_{j}) = O(n_{1}^{2\varepsilon_{2}-\varepsilon_{1}(\varepsilon+2\varepsilon_{2})/(\varepsilon+1)}) = o(1)$$

by (3.3). (6.1) follows from (2.6) and (2.9). From (3.2), we have

$$\frac{\partial}{\partial y_{1}} F^{*}(y_{1}, \ldots, y_{j}) = o(1)$$

for $1 < l < j$. Therefore, from (6.1),

$$F^{*}(x_{1}, \ldots, x_{j}) = F^{*}(y_{1}, \ldots, y_{j})$$

$$- Y^{-1}M^{-l}(l+1)R_{0} \left(\sum_{l=1}^{l} \xi_{l}^{2} + \sum_{l=1}^{l} \sum_{l+1}^{l} \xi_{l} \xi_{m} \right) + o(1).$$

Again, we see from (2.9), (3.4) and Theorem 2 that

$$F(x_{1}, \ldots, x_{j}) = F^{*}(x_{1}, \ldots, x_{j}) + o(1)$$

and Lemma 4 follows immediately.
7. Proof of Lemma 5. As the proof of this lemma is very similar to that of Lemma 3 in [11], we provide only an outline. It is easily seen that, for all \(l > 1 \),

\[
x_l \frac{\partial \varOmega(u)}{\partial x_l} = \varOmega(u)\left((1 - a_{th(l)}/M)z_{l\mu} - z_{l\mu}e^{\tau l\mu}(e^{\tau l\mu} - 1)^{-1}\right)
= -z_l \varOmega(u)(a_{th(l)}/M + u(e^{\tau l\mu} - 1)^{-1}).
\]

Because of the uniqueness of power series expansions, this equality implies that, if both sides are expanded in increasing powers of \(u \), the corresponding coefficients are equal. Therefore,

\[
x_l \frac{\partial I}{\partial x_l} = - z_l \{(a_{th(l)}/M)I'_{j_1} + I^{(l)}\},
\]

where

\[
I^{(l)} = I^{(l)}(z_1, \ldots, z_l) = I'_{j+1} \left(z_2, \ldots, z_l \right)
\]

and the \(a_{th(l)} \) associated with the second \(z_l \) is \(M \). It follows immediately that

\[
y_1 \frac{\partial I}{\partial y_1} \ldots, y_1 \frac{\partial I}{\partial y_1} = - (y_1 \frac{\partial I}{\partial y_1})(a_{th(l)}/M)I'_{j_1}(v_2 y_1, \ldots, y_1 y_1) + I^{(l)}(v_2 y_1, \ldots, y_1 y_1)\}.
\]

Similarly,

\[
y_1 \frac{\partial I}{\partial y_1} \ldots, y_1 \frac{\partial I}{\partial y_1} = - \sum_{k=2}^j (y_k y_1) \left(a_{k \mu(k)}/M \right) I'_{j_1}(v_2 y_1, \ldots, y_1 y_1) + I^{(k)}(v_2 y_1, \ldots, y_1 y_1)\}.
\]

Now, if \(\mu_{x+1}, \ldots, \mu_j \) are each \(O(\mu^{1+e}) \) for some fixed positive number \(e \) but none of \(\mu_2, \ldots, \mu_z \) is \(O(\mu^{1+e}) \) for any fixed positive number \(e \), then both \(I'_{j_1}(v_2 y_1, \ldots, y_1 y_1) \) and \(I^{(l)}(v_2 y_1, \ldots, y_1 y_1) \) can be expanded in powers of \(y_{x+1}, \ldots, y_j \) as \(I(v_2 y_1, \ldots, y_1 y_1) \) was in (3.8). It follows from (2.9) that \(Yy_1 \partial F^*\{y_1, \ldots, y_j\}/\partial y_1 \) can be written in the form

\[
Yy_1 I'_{j_1} + \sum_{k(1) \ldots k(j)} c^{(l)}_{k(1) \ldots k(j)} y_1^{k(1) \ldots y_j^{k(j)}} + \sum_{k(x+1) \ldots k(j)} c^{(l)}_{k(x+1) \ldots k(j)} \left(\frac{y_{x+1}}{y_1} \right)^{k(x+1)} \ldots \left(\frac{y_j}{y_1} \right)^{k(j)}
+ o\{(\mu_1 \cdots \mu_j)^{1/2+e/2}\},
\]

where the first sum is taken over all nonnegative integers \(k(1), \ldots, k(j) \) such that \(\mu_1^{k(1)} \cdots \mu_j^{k(j)} \) is not \(o\{(\mu_1 \cdots \mu_j)^{1/2+e/2}\} \) and the second sum is taken over
all nonnegative integers $k(s+1), \ldots, k(j)$ such that \((\mu_{s+1}/\mu_1)^{(s+1)} \ldots (\mu_j/\mu_1)^{(j)}\) is not $O(\mu^{-1} / (\mu_1 \cdots \mu_j)^{1 + \epsilon^2})$. The coefficients in the first sum are constants except when $k(1) + \cdots + k(j) = j$ in which case they are linear functions of $\log y_1$. The coefficients in the second sum are $O(1)$ and involve definite integrals of the form \(I_{s+1} \nu_2 y_1 \cdots y_s y_1 y_1 y_1 y_1\) for $2 \leq l \leq s$. Also, for $1 \leq l \leq j$, we have

\begin{equation}
(7.2) \quad c_{0\ldots0}^{(l)} = -M^{-l} \delta(j + 1)R_0.
\end{equation}

We put

\begin{equation}
(7.3) \quad y_l = \mu_l \sum_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)} \gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)} \mu_{k(1)} \cdots \mu_{k(j)} \times (\mu_{s+1}/\mu_1)^{k'(s+1)} \cdots (\mu_j/\mu_1)^{k'(j)}
\end{equation}

for $1 \leq l \leq j$, where the sum is taken over all nonnegative integers $k(1), \ldots, k(j), k'(s+1), \ldots, k'(j)$ such that \((\mu_{s+1}/\mu_1)^{(s+1)} \cdots (\mu_j/\mu_1)^{(j)}\) is not $O(1 / (\mu_1 \cdots \mu_j)^{1 + \epsilon^2})$. From (2.8), $\eta_j \mu_1 \cdots \mu_j = M^{-1} \delta(j + 1)R_0$ and therefore, it is easily seen from (7.2) that, for all $l,$

\[\gamma_{0\ldots0}^{(l)} = 1 \]

Hence, the expressions for y_l given in (7.3) satisfy $y_l \sim \mu_l.$

Now, by substituting in (7.1) for each y_l the finite series given in (7.3) and by equating the coefficients of $\mu_1^{k(1)} \cdots \mu_j^{k(j)} (\mu_{s+1}/\mu_1)^{k'(s+1)} \cdots (\mu_j/\mu_1)^{k'(j)}$ on each side of the resulting equation, we can calculate the other coefficients successively. Thus, for example,

\[2\gamma_{10\ldots0}^{(l)} + \sum_{\nu=1; \nu \neq l}^{j} \gamma_{10\ldots0}^{(\nu)} = -c_{10\ldots0}^{(l)} M^{-l} \delta(j + 1)R_0 \]

for $1 \leq l \leq j$ and these equations can easily be solved for each $\gamma_{10\ldots0}^{(l)}$ in terms of the $c_{10\ldots0}^{(\nu)}$ for $1 \leq \nu \leq j$. Also, for any $k(1), \ldots, k(j), k'(s+1), \ldots, k'(j),$

\[2\gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)} + \sum_{\nu=1; \nu \neq l}^{j} \gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(\nu)} = c_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)} \]

where the $c_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)}$ involve the coefficients $c_{k(1) \ldots k(j)}^{(l)}$, $c_{k(s+1) \ldots k(j)}^{(l)}$, and the $\gamma_{\nu(1) \ldots \nu(j) \nu'(s+1) \ldots \nu'(j)}^{(l)}$ for which every $\nu(l) \leq k(l)$, every $\nu'(l) \leq k'(l)$ and $\Sigma_1 \nu(l) + \Sigma_{s+1} \nu'(l) < \Sigma_1 k(l) + \Sigma_{s+1} k'(l)$. These equations can be solved to give each $\gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)}$ in terms of the $c_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)}$ for $1 \leq l \leq j$. Therefore, the coefficients

\[\gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)} \]

can be calculated successively, provided that we calculate first the $\gamma_{k(1) \ldots k(j) k'(s+1) \ldots k'(j)}^{(l)}$ for which $\Sigma_1 k(l) + \Sigma_{s+1} k'(l) = 1$, then
those for which $\sum_{i=1}^{s} k(i) + \sum_{i+1}^{s} k'(i) = 2$, and so on. The γ_i can thus be expressed completely in terms of the μ_i and this completes the proof of Lemma 5.

8. Concluding remarks. The dominant term in the asymptotic expansion for $p(n_1, \ldots, n_j)$ gives

$$\log p(n_1, \ldots, n_j) \sim (j + 1)(M^{-1} q(1) \cdots q(j)(j + 1)n_1 \cdots n_j)^{1/(j+1)},$$

which generalizes the well-known results for $j = 1$,

$$\log p(n : A_1) \sim \pi(2n_1/3)^{1/2}, \quad A_1 = \{1, 2, 3, \ldots\},$$

$$\log p(n_1 : A_1) \sim \pi(n_1/3)^{1/2}, \quad A_1 = \{1, 3, 5, \ldots\}.$$

When μ_2, \ldots, μ_j are each $O(\mu_1^{1+\epsilon_6})$ for some fixed positive number ϵ_6, the asymptotic formula for $p(n_1, \ldots, n_j)$ is expressed entirely in terms of elementary functions. Otherwise, the formula involves the definite integrals I_{sr} which we have been unable to express in terms of elementary functions except in very particular cases. However, since $\log f(x_1, \ldots, x_j) - \log f(kx_1, \ldots, kx_j)$ does not involve the integrals I, asymptotic formulae for the number of partitions of a multipartite number in which each part cannot occur more than a fixed number of times can be expressed entirely in terms of elementary functions.

Our references to the integral I and its properties have been somewhat abbreviated in this note. However, in an article in preparation, one of the authors will discuss in detail the properties of both the integral I and its generalization I_{sr}. The number $K(n_1, \ldots, n_j; A_1, \ldots, A_j)$ also appears to be of independent interest and it is our intention to investigate this in the near future.

REFERENCES

