INFINITE-DIMENSIONAL WHITEHEAD AND VIETORIS THEOREMS IN SHAPE AND PRO-HOMOTOPY

BY

DAVID A. EDWARDS AND ROSS GEOGHEGAN

ABSTRACT. In Theorem 3.3 and Remark 3.4 conditions are given under which an infinite-dimensional Whitehead theorem holds in pro-homotopy. Applications to shape theory are given in Theorems 1.1, 1.2, 4.1 and 4.2.

1. Introduction. Whitehead theorems in the shape theory of finite-dimensional spaces have been proved by Moszyńska [26] and by Mardešić [22], while in [7] we proved a Whitehead theorem in pro-homotopy theory for inverse systems of complexes whose dimensions are bounded. On first sight, the prospects for removing the hypotheses of finite dimension looked bleak, because of the counterexamples in [13], [11], [1, p. 35], [5] and [4]. However, by restricting ourselves just enough to avoid these counterexamples we have been able to prove reasonable theorems. We were led to them by reading the papers of Borsuk [31] and of Kozlowski and Segal [17]. For compact metric spaces (compacta) their theorem reads: a movable compactum whose shape groups are trivial is shape equivalent to a point. Our generalizations of this are Theorems 4.1 and 4.2 below. Confining ourselves in this introduction to the compact metric case, our theorem becomes:

Theorem 1.1. Let \(\varphi: X \to Y \) be a pointed shape morphism between pointed connected compacta, which induces isomorphisms on the (inverse limit) shape groups. If \(X \) is movable and \(Y \) is an FANR (in the pointed sense) then \(\varphi \) is a pointed shape equivalence.

This is proved by combining Theorem 4.2, below, with Theorem 5.1 of our paper [7].

Theorem 1.1 has a geometrical consequence of some interest. A map \(f: X \to Y \) between compacta is called a CE map (or cell-like map or Vietoris map) if for each \(y \in Y \), \(f^{-1}(y) \) is shape equivalent to a point. If \(X \) and \(Y \) are ANR's then \(f \) must be a homotopy equivalence (see [12], [15] and the references...
If X and Y are finite-dimensional compacta, f must be a shape equivalence (see [28] and [15]): Anderson (unpublished) was able to remove the requirement that X be finite dimensional. But if one also removes the requirement that Y be finite dimensional, counterexamples exist: Taylor [29] constructed a CE map from a nonmovable compactum onto the Hilbert Cube, while Keesling [14] modified this example to get a CE map from the Hilbert Cube onto a nonmovable compactum: clearly these cannot be shape equivalences. Kozlowski and Segal have gone further, by constructing [32] a CE map between movable compacta of different shapes. The theorems in this paper imply the following "infinite-dimensional Vietoris theorem" (which is proved by combining Theorem 1.1, above, with Theorem 2.3 of K. Kuperberg's paper [18]).

Theorem 1.2. Let $f: (X, x) \to (Y, y)$ be a CE map between pointed connected compacta. If (X, x) is movable and (Y, y) is an FANR (in the pointed sense), then f is a pointed shape equivalence.

Our principal tool is a Whitehead theorem in pro-homotopy, Theorem 3.3. Roughly, it says that a weak equivalence in pro-homotopy from an inverse system $\{X_\alpha\}$ of finite-dimensional complexes to a finite-dimensional complex Y is an equivalence provided $\{X_\alpha\}$ is movable. The point is that the dimensions of the complexes X_α need not be bounded.

In Remarks 3.4 and 4.4 we indicate how the hypotheses on X and Y of Theorem 1.1 can be replaced by the hypothesis that φ be a "movable morphism."

Note added May 1, 1975. J. Dydak [39] has extended our shape theoretic results. It is not clear whether his methods can be adapted to improve our pro-homotopy results.

2. Notation, terminology and a lemma. We follow the notational conventions set out in §§2 and 3 of [7]. The principal items are listed below. Shape terminology is introduced in §4.

If C is a category, pro-C denotes a certain category of inverse systems in C indexed by directed sets: for a description of the morphisms and other properties of pro-C see [5] or [22]; for the original more general version see the Appendix of [1]. C_{maps} denotes the category whose objects are the morphisms of C and whose morphisms from an object f to an object g are the commutative square diagrams

\[
\begin{array}{ccc}
\, & \, & \, \\
\downarrow & f & \downarrow \\
\, & \, & \, \\
\downarrow & g & \downarrow \\
\, & \, & \,
\end{array}
\]

in C. There is an obvious functor pro-$\left(C_{\text{maps}}\right) \to \text{pro-}\left(C_{\text{maps}}\right)$ and we say that the object $\{X_\alpha \to Y_\alpha\}$ of pro-$\left(C_{\text{maps}}\right)$ "induces" its image $\{X_\alpha\} \to \{Y_\alpha\}$ under this functor: see §3 of [7].
We suppress bonding morphisms and the indexing directed set, denoting an object of pro-C by $\{X_\alpha\}$. $\{X_\alpha\}$ is movable if for each α there exists $\beta \geq \alpha$ such that for all $\gamma \geq \beta$ the bond $p_{\alpha \beta}: X_\beta \to X_\alpha$ factors as $p_{\alpha \beta} = p_{\alpha \gamma} \circ r_{\beta \gamma}$ where $r_{\beta \gamma}: X_\beta \to X_\gamma$ is a morphism of C. $\{X_\alpha\}$ is uniformly movable if for each α there exists $\beta \geq \alpha$ such that the bond $p_{\alpha \beta}$ factors as $p_{\alpha \beta} = p_\alpha \circ r_\beta$ where $r_\beta: X_\beta \to \{X_\alpha\}$ is a morphism of pro-C and $p_\alpha: \{X_\alpha\} \to X_\alpha$ is the projection morphism of pro-C. (C is, of course, embedded as a full subcategory of pro-C.)

A directed set is closure finite if each element has only finitely many predecessors.

Categories used include: Groups (groups and homorphisms); T_0 (pointed connected topological spaces and pointed continuous functions); HT_0 (the homotopy category corresponding to T_0); CW_0 (pointed connected CW complexes and pointed continuous functions); H_0 (the homotopy category corresponding to CW_0); HT_0-pairs (pointed pairs of connected spaces and pointed homotopy classes of maps); H_0,pairs (pointed pairs of connected CW complexes and pointed homotopy classes of maps).

We call an object of pro-Groups a pro-group. We always suppress base points of spaces.

The definition of uniform movability becomes simpler in the case of pro-groups. A pro-group $G = \{G_\alpha\}$ is (clearly) uniformly movable if and only if for each α there exists $\beta \geq \alpha$ such that the bond $p_{\alpha \beta}: G_\beta \to G_\alpha$ factors as $p_{\alpha \beta} = p_\alpha \circ r_\beta$ where $r_\beta: G_\beta \to \lim G$ is a homomorphism and $p_\alpha: \lim G \to G_\alpha$ is projection on the α factor.

Lemma 2.1. Let $G = \{G_\alpha\}$ be a uniformly movable pro-group. Let H be a group, let $f: G \to H$ be a morphism of pro-Groups and let $p: \lim G \to G$ be the projection morphism. If $f \equiv f \circ p$ is an isomorphism (of groups) then f is an isomorphism (of pro-groups).

Proof. The required inverse to f is $p \circ \widetilde{f}^{-1}$. It is trivial that $f \circ (p \circ \widetilde{f}^{-1})$ is the identity of G. To show that $(p \circ \widetilde{f}^{-1}) \circ f$ is the identity of $\{G_\alpha\}$ it is enough to show that given α there exists $\gamma \geq \alpha$ such that $p_\alpha \circ \widetilde{f}^{-1} \circ f_\beta \circ p_{\beta \gamma} = p_{\alpha \gamma}$. Since G is uniformly movable the above remark implies that there exist $\beta \geq \alpha$ and $r_\beta: G_\beta \to \lim G$ such that $p_{\alpha \beta} = p_\alpha \circ r_\beta$. Let f be represented by homomorphisms $f_\alpha: G_\alpha \to H$. Choose $\gamma \geq \beta$ such that $f_\beta \circ p_{\beta \gamma} = f_\alpha \circ p_{\alpha \beta} \circ p_{\beta \gamma}$. Then

$$f_\beta \circ p_{\beta \gamma} = f_\alpha \circ p_\alpha \circ r_\beta \circ p_{\beta \gamma} = \widetilde{f} \circ r_\beta \circ p_{\beta \gamma}.$$

So

$$p_\alpha \circ \widetilde{f}^{-1} \circ f_\beta \circ p_{\beta \gamma} = p_\alpha \circ r_\beta \circ p_{\beta \gamma} = p_{\alpha \beta} \circ p_{\beta \gamma} = p_{\alpha \gamma}. \qed$$
3. A Whitehead theorem in pro-homotopy. The principal result here is Theorem 3.3. Lemma 3.1 and Proposition 3.2 are the modifications needed to obtain an infinite-dimensional Whitehead theorem from [22] and [7].

If \(f: X \to Y \) is a morphism of \(T_0 \), \(M(f) \) denotes the reduced mapping cylinder of \(f \), and \(X \) is regarded as a subset of \(M(f) \) in the usual manner. Thus \((M(f), X)\) is an object of \(T_{0,\text{pairs}} \). If \(f = \{X_\alpha \xrightarrow{f_\alpha} Y_\alpha\} \) is an object of \((T_{0,\text{maps}}) \) then \(M(f) = \{(M(f_\alpha), X_\alpha)\} \) is a well-defined object of \(\text{pro-}(T_{0,\text{pairs}}) \) and so induces an object of \(\text{pro-}(HT_{0,\text{pairs}}) \); see §3 of [7].

Lemma 3.1. Let \(f = \{X_\alpha \xrightarrow{f_\alpha} Y_\alpha\} \) be an object of \(\text{pro-}(CW_{0,\text{maps}}) \) whose domain \(\{X_\alpha\} \) is movable in \(\text{pro-}H_0 \) and whose range \(\{Y_\alpha\} \) is such that every \(Y_\alpha \) is the same (pointed) complex \(Y \), and every bond \(Y_\beta \to Y_\alpha \) is the identity map. Then \(\{(M(f_\alpha), X_\alpha)\} \) is movable in \(\text{pro-}(HT_{0,\text{pairs}}) \).

Proof. Let \(p_{\alpha \gamma}: X_\beta \to X_\alpha \) denote the appropriate bond of \(\{X_\alpha\} \). Given \(\alpha \), there exists \(\beta \geq \alpha \) such that for all \(\gamma \geq \beta \) there is a pointed map \(r^{\beta \gamma}: X_\beta \to X_\gamma \) with the property that \(p_{\alpha \beta} \) is pointedly homotopic to \(p_{\alpha \gamma} \circ r^{\beta \gamma} \). By Theorem 2.8.9 of [37], \(p_{\alpha \gamma} \) may be replaced by a fibration: to be precise, there exist a pointed fibration \(p'_{\alpha \gamma}: X_\gamma' \to X_\alpha \), and an inclusion \(i: X_\gamma \to X_\gamma' \) as a pointed strong deformation retract, such that \(p'_{\alpha \gamma} \circ i = p_{\alpha \gamma} \). Since \(p'_{\alpha \gamma} \) is a fibration, there is a pointed map \(s^{\beta \gamma}: X_\beta \to X_\gamma' \) such that \(p_{\alpha \gamma} \circ s^{\beta \gamma} = p_{\alpha \beta} \). Letting \(f'_\gamma = f_\alpha \circ p'_{\alpha \gamma} \) we have a commutative diagram in \(CW_0 \):

\[
\begin{array}{ccc}
X_\alpha & \xrightarrow{f_\alpha} & Y \\
\uparrow{p_{\alpha \gamma}} & & \downarrow{f'_{\gamma}} \\
X_\gamma & \xrightarrow{f'_\gamma} & X_\gamma' \end{array}
\]

From it, we obtain a commutative diagram in \(T_{0,\text{pairs}} \):

\[
\begin{array}{ccc}
(M(f_\alpha), X_\alpha) & \xrightarrow{q_{\alpha \beta}} & (M(f_\beta), X_\beta) \\
\downarrow{q_{\alpha \gamma}} & & \downarrow{t^{\beta \gamma}} \\
(M(f_\gamma), X_\gamma) & \xrightarrow{j} & (M(f'_\gamma), X'_\gamma) \end{array}
\]
j induces pointed homotopy equivalences $M(f_\gamma) \to M(f'_\gamma)$ and $X_\gamma \to X'_\gamma$; by Lemma 1 of [34], we could deduce that j induces an isomorphism in $HT_{0,\text{pairs}}$ if we knew that $(M(f_\gamma), X_\gamma)$ and $(M(f'_\gamma), X'_\gamma)$ were isomorphic in $HT_{0,\text{pairs}}$ to pointed CW pairs. It is not hard to show that $(M(f_\gamma), X_\gamma)$ has this property (f_γ is homotopic to a cellular map; use Lemma 3.9 of [7]). But it is not clear that the same is true of $(M(f'_\gamma), X'_\gamma)$. To avoid the problem, we apply the composite functor “geometric realization of the singular complex” [33], $| \cdot | \circ S : T_0 \to CW_0$, to the diagram (\ast), and thus obtain the following commutative diagram in $CW_{0,\text{pairs}}$, analogous to (\ast):

\[
\begin{array}{cccc}
(M(|Sf_\alpha|), |SX_\alpha|) & \xrightarrow{\bar{q}_{\alpha\beta}} & (M(|Sf_\beta|), |SX_\beta|) \\
\downarrow \bar{q}_{\alpha\gamma} & & \downarrow \bar{t}_{\beta\gamma} \\
(M(|Sf'_\gamma|), |SX'_\gamma|) & \xrightarrow{\bar{f}} & (M(|Sf'_\beta|), |SX'_\beta|)
\end{array}
\]

where the maps are obtained from those of (\ast) in the obvious way. Now, Lemma 1 of [34] implies that \bar{f} induces an isomorphism in $HT_{0,\text{pairs}}$. It follows that $\bar{q}_{\alpha\beta}$ can be lifted in $HT_{0,\text{pairs}}$ through $\bar{q}_{\alpha\gamma}$, so that $\{(M(|Sf_\alpha|), |SX_\alpha|)\}$ is movable in $HT_{0,\text{pairs}}$ (where the bonds are induced by the maps $\bar{q}_{\alpha\beta}$). The argument is completed by observing that $\{(M(|Sf_\alpha|), |SX_\alpha|)\}$ is isomorphic in pro-$HT_{0,\text{pairs}}$ to $\{(M(f_\alpha), X_\alpha)\}$. To see this, observe that there is a commutative diagram in $T_{0,\text{pairs}}$

\[
\begin{array}{cccc}
(M(f_\alpha), X_\alpha) & \xrightarrow{q_{\alpha\beta}} & (M(|Sf_\alpha|), |SX_\alpha|) \\
\downarrow q_{\alpha\beta} & & \downarrow \bar{q}_{\alpha\beta} \\
(M(f_\beta), X_\beta) & \xrightarrow{\bar{q}_{\alpha\beta}} & (M(|Sf_\beta|), |SX_\beta|)
\end{array}
\]

whose horizontal morphisms are induced by the canonical maps $|SX_\alpha| \to X_\alpha$, $|SY| \to Y$, etc. As explained above $(M(f_\alpha), X_\alpha)$ is isomorphic in $HT_{0,\text{pairs}}$ to a pointed CW pair; and $(M(|Sf_\alpha|), |SX_\alpha|)$ is itself a pointed CW pair. So, by Lemma 1 of [34], the horizontal morphisms are isomorphisms in $HT_{0,\text{pairs}}$. Since $\{(M(f_\alpha))\}$ is isomorphic to a movable object, it is itself movable.

\[\square\]

Proposition 3.2. Let $\{(P_{\alpha}, P'_\alpha)\}$ be a movable object of pro-$HT_{0,\text{pairs}}$ indexed by a closure finite directed set. Assume that each P_{α} is a finite-dimensional simplicial complex and that P'_α is a subcomplex of P_{α}. If $\{\pi_k(P_{\alpha}, P'_\alpha)\}$ is trivial for all k, then the “inclusion” $\{P'_\alpha\} \to \{P_{\alpha}\}$ is an isomorphism in pro-H_0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. The proof is almost identical to that of Theorem 2 of [22]. Movability makes unnecessary the hypothesis in [22] that the dimensions of the complexes P_{α} be bounded. For each α choose $\beta(\alpha) \geq \alpha$ such that for every $\gamma \geq \beta(\alpha)$ there exists a morphism of H_0-pairs, $s^{\beta \gamma}: (P_{\beta}, P_{\beta}) \to (P_{\gamma}, P_{\gamma})$, such that $q_{\alpha \gamma} \circ s^{\beta \gamma} = q_{\alpha \beta}$ where $q_{\lambda \mu}: (P_{\lambda}, P_{\mu}) \to (P_\mu, P_\mu)$ denotes the appropriate bonding morphism. Following 2.3 of [22], assume $\beta(\alpha) \leq \beta(\tilde{\alpha})$ whenever $\alpha \leq \tilde{\alpha}$.

Claim 1. For each α, each pointed pair of finite-dimensional simplicial complexes (K, K') and each pointed map $\varphi: (K, K') \to (P_{\beta(\alpha)}, P'_{\beta(\alpha)})$ there exists a pointed map $\psi: K \to P'_{\beta(\alpha)}$ such that (inclusion) $\circ \psi$ is pointedly homotopic to (bond) $\circ \varphi$ in P_{α} and $\psi|K'$ is pointedly homotopic to (bond) $\circ \varphi|K'$ in P'_{α}.

Proof of Claim 1. By Lemma 1 (§6.2) of [22] with $n + 1 = \dim K$ and $\alpha \ast \geq \beta(\alpha)$; movability implies that φ can be lifted to $(P_{\alpha \ast}, P'_{\alpha \ast})$, hence ψ exists.

Claim 2. Given α and a pointed finite-dimensional complex L, let $\varphi_0, \varphi_1: L \to P'_{\beta(\alpha)}$ be pointed maps such that (inclusion) $\circ \varphi_0$ and (inclusion) $\circ \varphi_1$ are pointedly homotopic in $P_{\beta(\alpha)}$. Then (bond) $\circ \varphi_0$ and (bond) $\circ \varphi_1$ are pointedly homotopic in P'_{α}.

Proof of Claim 2. By Lemma 2 (§6.3) of [22] with $n = \dim L$: movability implies that φ_0 and φ_1 can be lifted to $P'_{\alpha \ast}$, and the claim follows.

The remainder of the proof is similar to the corresponding proof in §6.4 of [22]. Claims 1 and 2 are used in place of Lemmas 1 and 2 of [22].

Theorem 3.3. Let Y be a pointed complex, $\{X_{\alpha}\}$ an object of pro-CW$_0$ and $g: X \to Y$ a morphism of pro-H$_0$. Assume Y and each X_{α} are finite dimensional, and that the object of pro-H$_0$ induced by $\{X_{\alpha}\}$ is movable. If $g \# : \{\pi_k(X_{\alpha})\} \to \pi_k(Y)$ is an isomorphism (in the category pro-Groups) for every k, then g induces an isomorphism of pro-H$_0$.

Proof. The proof is similar to that of Theorem 3.1 of [7]. Since Y is a complex, we may represent g by a morphism of pro-CW$_0$ and hence replace it by an object $f \equiv \{X'_\gamma \xrightarrow{f_\gamma} Y'_\gamma\}$ of pro-(CW$_0$,maps) indexed by a closure finite directed set such that: $\{X'_\gamma\}$ is movable, each X'_γ is finite dimensional, each Y'_γ is Y, and each bond of $\{Y'_\gamma\}$ is the identity map; see §3 of [7]. $f_\#: \{\pi_k(X'_\gamma)\} \to \{\pi_k(Y'_\gamma)\}$ is an isomorphism of pro-groups for each k. By Lemma 3.8 of [7], $\{\pi_k(M(f_\gamma), X'_\gamma)\}$ is trivial, where $\{M(f_\gamma)\}$ is the reduced mapping cylinder object of pro-CW$_0$ corresponding to f (see §3 of [7]). Each $M(f_\gamma)$ is finite dimensional.

By Lemma 3.1, above, $\{(M(f_\gamma), X'_\gamma)\}$ is movable in pro-(HT$_0$,pairs). The rest of the proof is as in [7], except that Proposition 3.12 of [7] is replaced by the above Proposition 3.2.

Remark 3.4. There is a variation on Theorem 3.3. Following [9], define \tilde{H}-CW$_0$,maps to be the category whose objects are those of CW$_0$,maps and whose
morphisms are homotopy classes of morphisms of $CW_{0, maps}$, where two morphisms (a_1, a_2) and (b_1, b_2) from $f: X \rightarrow Y$ to $f': X' \rightarrow Y'$ are defined to be **homotopic** if there is a morphism (θ_1, θ_2) from $f \times 1: X \times I \rightarrow Y \times I$ to $f': X' \rightarrow Y'$ such that θ_i is a homotopy between a_i and b_i, $i = 1, 2$. Call an object $(X_\gamma, f_\gamma: Y_\gamma)$ of pro-$CW_{0, maps}$ H-movable if it induces a movable object of pro-$H_{CW_{0, maps}}$. Call a morphism $g: \{X_\alpha\} \rightarrow \{Y_\beta\}$ of pro-CW_0 movable if g is isomorphic in (pro-H_0) maps to the object of (pro-H_0) maps induced by such an H-movable (f_γ). If each X_α and each Y_β is finite dimensional, if g is movable, and if g induces isomorphisms of homotopy pro-groups, then g induces an isomorphism in pro-H_0. The proof is similar to that of Theorem 3.3. The hypotheses make it possible to by-pass Lemma 3.1: clearly $\{(M(f_\gamma), X_\gamma)\}$ is movable in pro-$HT_{0, pairs}$.

4. Whitehead theorems in shape. All spaces mentioned will be paracompact Hausdorff, so our shape theory may be understood either in the sense of [21] or [27], since these two theories agree on such spaces [19], [25]. For compact Hausdorff spaces these theories agree with that of [23], and for compact metric spaces they agree with that of [3] (see [24]).

We refer the reader to [25] or to §3 of [22] for an account of how the shape theory of spaces is fully and faithfully reflected in pro-homotopy theory. In particular, if X and Y are pointed connected spaces, there is a functorial bijection between the (pointed) shape morphisms from X to Y and the morphisms of pro-H_0 from $\{X_\alpha\}$ to $\{Y_\beta\}$, where $\{X_\alpha\}$ and $\{Y_\beta\}$ are objects of pro-H_0 (unique up to isomorphism) which are “associated” with X and Y respectively. A shape morphism $\varphi: X \rightarrow Y$ is a weak shape equivalence if the corresponding $f: \{X_\alpha\} \rightarrow \{Y_\beta\}$ induces isomorphisms $f_\#_\kappa: \{\pi_k(X_\alpha)\} \rightarrow \{\pi_k(Y_\beta)\}$ in pro-Groups for each $k \geqslant 1$. φ is a very weak shape equivalence if $f_\#_\kappa: \varprojlim \{\pi_k(X_\alpha)\} \rightarrow \varprojlim \{\pi_k(Y_\beta)\}$ is an isomorphism in Groups for each $k \geqslant 1$. X is movable [resp. uniformly movable] if $\{X_\alpha\}$ is movable [resp. uniformly movable] in pro-H_0.

Every object of pro-CW_0 gives rise to an object of pro-H_0, but (apart from the case of countably indexed systems) it is unknown whether every object of pro-H_0 “comes from” an object of pro-CW_0. The Vietoris functor [27] allows one to associate objects “coming from” pro-CW_0 with spaces, but the complexes involved are infinite dimensional. It is for these reasons that we confine ourselves to compact Hausdorff spaces in the theorems which follow.

Theorem 4.1. Let X be a movable pointed connected compact Hausdorff space, let Y be pointed shape equivalent to a pointed connected CW complex
and let \(\varphi: X \to Y \) be a pointed shape morphism. If \(\varphi \) is a weak shape equivalence, it is a pointed shape equivalence.

Proof. Assume \(Y \) is a CW complex. First assume \(Y \) is a finite-dimensional complex. As we shall see, no generality is lost by this.

Let \(\{X_\alpha\} \) be an object of pro-CW\(_0\) whose inverse limit is homeomorphic to \(X \). Then \(\{X_\alpha\} \) is associated with \(X \) in the sense of [25]. Let \(g: \{X_\alpha\} \to Y \) be a morphism of pro-H\(_0\) associated with \(\varphi \) in the sense of [25]. By Theorem 3.3, \(g \) induces an isomorphism in pro-H\(_0\). Hence, by [25], \(\varphi \) is a shape equivalence.

If \(Y \) is not finite dimensional we show that it must be (pointed) homotopy equivalent to a finite-dimensional complex. Since \(X \) is compact, \(g \) may be represented by a continuous map \(g_{\alpha_0}: X_{\alpha_0} \to Y \) for some \(\alpha_0 \), and hence \(g \) factors through a finite subcomplex \(K \) of \(Y \). So \(\tilde{g}: \{X_\alpha\} \to \tilde{Y} \) factors through \(\tilde{K} \) (where we have applied the pointed universal cover functor \(\tilde{\cdot} \)). Since \(g \) is a weak equivalence in pro-H\(_0\), so also is \(\tilde{g} \). Hence \(g \) and \(\tilde{g} \) are \(\tilde{\cdot} \)-isomorphisms [1, §4]; therefore, they induce isomorphisms on homology pro-groups and cohomology groups with every possible coefficient bundle (see 4.4 of [1]). Since \(K \) and \(\tilde{K} \) are finite dimensional, the homology of \(\tilde{Y} \) and the cohomology of \(Y \) vanish above the dimension of \(K \). By Theorem E of [30], \(Y \) is homotopy equivalent (hence pointed homotopy equivalent) to a finite-dimensional complex. \(\square \)

Theorem 4.2. Let \(X \) be a uniformly movable pointed connected compact Hausdorff space, let \(Y \) be pointed shape equivalent to a pointed CW complex, and let \(\varphi: X \to Y \) be a morphism in pointed shape. If \(\varphi \) is a very weak shape equivalence, it is a pointed shape equivalence. Furthermore, if \(X \) is metrizable it is only necessary to assume that \(X \) is movable.

Proof. By Lemma 2.1, \(\varphi \) is a weak shape equivalence, so the conclusion follows from Theorem 4.1. For metric compacta the concepts of “movable” and “uniformly movable” coincide, by [38] (see also Theorem 4.7 of [16] and Remark 6.7 of [35]) so the last statement is justified.

Remark 4.3. Various criteria are available for deciding if a given space \(Y \) is shape equivalent to a CW complex (as required in Theorems 4.1 and 4.2). See [10], [6], [7], [8].

Remark 4.4. Following Remark 3.4, one may define the notion of “movable shape morphism”: the special case of “movable map” is discussed in [9]. One may then prove that if \(\varphi: X \to Y \) is a movable pointed shape morphism between metric compacta and if \(\varphi \) is a very weak shape equivalence, then \(\varphi \) is a shape equivalence. A remark on p. 4 of [2] (incorrect as stated, but correct in the countable case) is used instead of Lemma 2.1 to show that \(\varphi \) is a weak shape equivalence.
equivalence. Then Remark 3.4 is used instead of Theorem 3.3 to complete the proof. Compare with [36].

Remark 4.5. If one interchanges the properties of X and Y in Theorems 4.1 and 4.2, making Y movable (or uniformly movable) and X shape equivalent to a complex, the resulting "theorems" are false. Counterexamples are given in [5]. However, if one also requires X to be compact metric (or, equivalently, to be an FANR: see [6]) we do not know a counterexample. Added in proof: there is none; see [39].

REFERENCES

12. W. E. Haver, *Mappings between ANR’s that are fine homotopy equivalences* (mimeographed).

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAMTON, NEW YORK 13901