Infinite-dimensional Whitehead and Vietoris theorems in shape and pro-homotopy

Authors:
David A. Edwards and Ross Geoghegan

Journal:
Trans. Amer. Math. Soc. **219** (1976), 351-360

MSC:
Primary 55E05; Secondary 54C56

DOI:
https://doi.org/10.1090/S0002-9947-1976-0402735-4

MathSciNet review:
0402735

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In Theorem 3.3 and Remark 3.4 conditions are given under which an infinite-dimensional Whitehead theorem holds in pro-homotopy. Applications to shape theory are given in Theorems 1.1, 1.2, 4.1 and 4.2.

**[1]**M. Artin and B. Mazur,*Etale homotopy*, Lecture Notes in Math., vol. 100, Springer-Verlag, Berlin and New York, 1969. MR**39**#6883. MR**0245577 (39:6883)****[2]**M. F. Atiyah and G. B. Segal,*Equivariant K-theory and completion*, J. Differential Geometry**3**(1969), 1-18. MR**41**#4575. MR**0259946 (41:4575)****[3]**K. Borsuk,*Concerning homotopy properties of compacta*, Fund. Math.**62**(1968), 223-254. MR**37**#4811. MR**0229237 (37:4811)****[4]**J. Draper and J. Keesling,*An example concerning the Whitehead theorem in shape theory*, Fund. Math. (to appear). MR**0431157 (55:4159)****[5]**D. A. Edwards and R. Geoghegan,*Compacta weak shape equivalent to ANR's*, Fund. Math.**90**(1975). MR**0394643 (52:15444)****[6]**-,*Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction*, Ann. of Math.**101**(1975), 521-535. MR**0375330 (51:11525)****[7]**-,*The stability problem in shape and a Whitehead theorem in pro-homotopy*, Trans. Amer. Math. Soc.**214**(1975), 261-277. MR**0413095 (54:1216)****[8]**-,*Stability theorems in shape and pro-homotopy*, Trans. Amer. Math. Soc. (to appear). MR**0423347 (54:11326)****[9]**D. A. Edwards and P. T. McAuley,*The shape of a map*, Fund. Math. (to appear). MR**0488046 (58:7621)****[10]**R. Geoghegan and R. C. Lacher,*Compacta with the shape of finite complexes*, Fund. Math. (to appear). MR**0418029 (54:6073)****[11]**D. Handel and J. Segal,*An acyclic continuum with non-movable suspensions*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**21**(1973), 171-172. MR**47**#5813. MR**0317266 (47:5813)****[12]**W. E. Haver,*Mappings between ANR's that are fine homotopy equivalences*(mimeographed).**[13]**D. S. Kahn,*An example in Čech cohomology*, Proc. Amer. Math. Soc.**16**(1965), 584. MR**31**#4027. MR**0179785 (31:4027)****[14]**J. Keesling,*A trivial-shape decomposition of the Hilbert cube such that the decomposition space is not an absolute retract*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (to appear). MR**0391100 (52:11922)****[15]**G. Kozlowski,*Images of ANR's*(preprint).**[16]**G. Kozlowski and J. Segal,*Locally well-behaved paracompacta in shape theory*, Fund. Math. (to appear). MR**0442926 (56:1301)****[17]**-,*Movability and shape connectivity*, Fund. Math. (to appear). MR**0431158 (55:4160)****[18]**K. Kuperberg,*Two Vietoris-type isomorphism theorems in Borsuk's theory of shape, concerning the Vietoris-Čech homology and Borsuk's fundamental groups*, Studies in Topology, Academic Press, New York, 1975. MR**0383398 (52:4279)****[19]**J. Levan,*Shape theory*, Doctoral Dissertation, University of Kentucky, 1973.**[20]**A. T. Lundell and S. Weingram,*The topology of CW complexes*, Van Nostrand Reinhold, New York, 1969.**[21]**S. Mardešić,*Shapes for topological spaces*, General Topology and Appl.**3**(1973), 265-282. MR**0324638 (48:2988)****[22]**-,*On the Whitehead theorem in shape theory*. I, Fund. Math. (to appear).**[23]**S. Mardešić and J. Segal,*Shapes of compacta and ANR-systems*, Fund. Math.**72**(1971), 41-59. MR**45**#7686. MR**0298634 (45:7686)****[24]**-,*Equivalence of the Borsuk and the ANR-system approach to shapes*, Fund. Math.**72**(1971), 61-68. MR**46**#850. MR**0301694 (46:850)****[25]**K. Morita,*On shapes of topological spaces*, Fund. Math.**86**(1975), 251-259. MR**0388385 (52:9222)****[26]**M. Moszyńska,*The Whitehead theorem in the theory of shape*, Fund. Math.**80**(1973), 221-263. MR**0339159 (49:3922)****[27]**T. Porter,*Čech homotopy*. I, II, J. London Math. Soc. (2)**6**(1973), 429-436, 667-675. MR**47**#9613,**50**#8517a.**[28]**R. B. Sher,*Realizing cell-like maps in euclidean space*, General Topology and Appl.**2**(1972), 75-89. MR**46**#2683. MR**0303546 (46:2683)****[29]**J. L. Taylor,*A counter-example in shape theory*, Bull. Amer. Math. Soc.**81**(1975), 629-632. MR**0375328 (51:11523)****[30]**C. T. C. Wall,*Finiteness conditions for CW-complexes*, Ann. of Math. (2)**81**(1965), 56-69. MR**30**#1515. MR**0171284 (30:1515)****[31]**K. Borsuk,*Some remarks on shape properties of compacta*, Fund. Math.**85**(1974), 185-195. MR**0353246 (50:5730)****[32]**G. Kozlowski and J. Segal,*Local behavior and the Vietoris and Whitehead theorems in shape theory*, Fund. Math. (to appear). MR**0482754 (58:2808)****[33]**J. P. May,*Simplicial objects in algebraic topology*, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR**36**#5942. MR**0222892 (36:5942)****[34]**J. W. Milnor,*On spaces having the homotopy type of CW-complex*, Trans. Amer. Math. Soc.**90**(1959), 272-280. MR**20**#6700. MR**0100267 (20:6700)****[35]**M. Moszyńska,*Uniformly movable compact spaces and their algebraic properties*, Fund. Math.**77**(1972), 125-144. MR**48**#1224. MR**0322863 (48:1224)****[36]**-,*Concerning the Whitehead theorem for movable compacta*, Fund. Math. (to appear). MR**0423348 (54:11327)****[37]**E. H. Spanier,*Algebraic topology*, McGraw-Hill, New York, 1966. MR**35**#1007. MR**0210112 (35:1007)****[38]**S. Spiesź,*Movability and uniform movability*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**22**(1974), 43-45. MR**0346741 (49:11466)****[39]**J. Dydak,*Some remarks concerning the Whitehead theorem in shape theory*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**23**(1975), 437-445. MR**0400155 (53:3990)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55E05,
54C56

Retrieve articles in all journals with MSC: 55E05, 54C56

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0402735-4

Article copyright:
© Copyright 1976
American Mathematical Society