Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Čech cohomology of movable and $ n$-movable spaces


Author: James Keesling
Journal: Trans. Amer. Math. Soc. 219 (1976), 149-167
MSC: Primary 55B05; Secondary 54C56
DOI: https://doi.org/10.1090/S0002-9947-1976-0407829-5
MathSciNet review: 0407829
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the Čech cohomology of movable and n-movable spaces is studied. Let X be a space and let $ {H^k}(X)$ denote the k-dimensional Čech cohomology of X with integer coefficients based on the numerable covers of X. Then if X is movable, there is a subgroup E of $ {H^k}(X)$ which is the union of all the algebraically compact subgroups of $ {H^k}(X)$. Furthermore, $ {H^k}(X)/E$ is an $ {\aleph _1}$-free abelian group. If X is an n-movable space, then it is shown that this structure holds for $ {H^k}(X)$ for $ 0 \leqslant k \leqslant n$ and may be false for $ k \geqslant n + 1$. If X is an $ {\text{LC}^{n - 1}}$ paracompactum, then X is known to be n-movable. However, in this case and in the case that X is an $ {\text{LC}^{n - 1}}$ compactum a stronger structure theorem is proved for $ {H^k}(X)$ for $ 0 \leqslant k \leqslant n - 1$ than that stated above. Using these results examples are given of n-movable continua that are not shape equivalent to any $ {\text{LC}^{n - 1}}$ paracompactum.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, On movable compacta, Fund. Math. 66 (1969/70), 137-146. MR 40 #4925. MR 0251698 (40:4925)
  • [2] -, On the n-movability, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 20 (1972), 859-864. MR 47 #2540. MR 0313988 (47:2540)
  • [3] L. Fuchs, Infinite Abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York and London, 1970. MR 41 #333. MR 0255673 (41:333)
  • [4] J. Keesling, An algebraic property of the Čech cohomology groups which prevents local connectivity and movability, Trans. Amer. Math. Soc. 190 (1974), 151-162. MR 0367973 (51:4215)
  • [5] -, On movability and local connectivity, Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 158-167. MR 0367913 (51:4155)
  • [6] -, Shape theory and compact connected abelian topological groups, Trans. Amer. Math. Soc. 194 (1974), 349-358. MR 0345064 (49:9803)
  • [7] -, The Čech homology of compact connected abelian topological groups with applications to shape theory, Lecture Notes in Math., vol. 438, Springer-Verlag, New York, 1975, pp. 325-331. MR 0405344 (53:9138)
  • [8] G. Kozlowski and J. Segal, n-movable compacta and ANR-systems, Fund. Math. (to appear). MR 0358678 (50:11137)
  • [9] -, Locally well-behaved paracompacta in shape theory (preprint).
  • [10] A. T. Lundell and S. Weingram, The topology of CW complexes, Van Nostrand Reinhold, New York, 1969.
  • [11] S. Mardešić, n-dimensional $ {\text{LC}^{n - 1}}$ compacta are movable, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 505-509. MR 46 #869. MR 0301714 (46:869)
  • [12] -, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265-282. MR 48 #2988. MR 0324638 (48:2988)
  • [13] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 649-654. MR 44 #1026. MR 0283796 (44:1026)
  • [14] -, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59. MR 45 #7686. MR 0298634 (45:7686)
  • [15] R. H. Overton and J. Segal, A new construction of movable compacta, Glasnik Mat. Ser. III 6 (26) (1971), 361-363. MR 48 #1157. MR 0322796 (48:1157)
  • [16] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [17] H. B. Griffiths, Local topological invariants. II, Trans. Amer. Math. Soc. 89 (1958), 201-244. MR 21 #872. MR 0102077 (21:872)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55B05, 54C56

Retrieve articles in all journals with MSC: 55B05, 54C56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0407829-5
Keywords: Shape theory, movable space, n-movable space, $ {\text{LC}^{n - 1}}$ paracompactum, Čech cohomology
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society