ON THE TRIVIAL EXTENSION
OF EQUIVALENCE RELATIONS
ON ANALYTIC SPACES

BY
KUNIO TAKIJIMA AND TETSUTARO SUZUKI

ABSTRACT. In this paper, we shall consider the problem: let X be a
(reduced) analytic space and A a nowhere dense analytic set in X. And let R
be a proper equivalence relation on A such that the quotient space A/R is an
analytic space, and \tilde{R} the trivial extension of R to X. Then, is X/\tilde{R} an
analytic space? To this, we have three sufficient conditions. Moreover, using
this result we shall extend Satz 1 of H. Kerner [8].

1. Introduction. Let (X, \mathcal{O}) be an analytic space and R an equivalence
relation on X. Then the local ringed quotient space $(X/R, \mathcal{O}/R)$ is defined and
the problem, whether $(X/R, \mathcal{O}/R)$ is an analytic space, is studied by H. Cartan,
H. Holmann, B. Kaup and others.

In this paper, we shall consider the problem: let X be a (reduced) analytic
space and A a nowhere dense analytic set in X. And let R be a proper equiva-
lence relation on A such that the quotient space A/R is an analytic space, and
\tilde{R} the trivial extension of R to X. Then, is X/\tilde{R} an analytic space? To this, we
have

Theorem. X/\tilde{R} is an analytic space, if one of the following three state-
ments is satisfied:

(1) R is finite.
(2) A is contractible in X and the canonical mapping $j: A/R \to X/\tilde{R}$ is
 quasi-finite.
(3) A is contractible and retractable in X.

Next, using Theorem, (3), we shall extend Satz 1 of H. Kerner [8]: let X_k
be a connected complex manifold, A_k a contractible and retractable analytic set
in X_k and R_k a proper equivalence relation on A_k such that A_k/R_k is an analy-
tic space and $\dim_a R_k(a) > 0$ for any $a \in A_k$ ($k = 1, 2$). Then, we have the
following diagrams of analytic spaces:

Received by the editors July 16, 1974 and, in revised form, March 26, 1975.
Key words and phrases. Analytic space, proper equivalence relation, trivial extension
of equivalence relation.
Here $p_k : A_k \to A_k/R_k$, $\tilde{p}_k : X_k \to X_k/\tilde{R}_k$ are natural projections, $i_k : A_k \to X_k$ is the injection and $j_k : A_k/R_k \to X_k/\tilde{R}_k$ is the canonical mapping. Let $r_k : X_k \to A_k$ be the holomorphic retraction. Then, we have

Theorem. Suppose that f.m.d. $r_2 \geq \dim A_1 + 2$. If X_1/\tilde{R}_1 and X_2/\tilde{R}_2 are analytically equivalent, then the above two diagrams are analytically equivalent.

H. Kerner has treated the case that $r_k : X_k \to A_k$ is a weakly negative vector bundle and $R_k(a) = A_k$ for any $a \in A_k$.

2. Trivial extension of equivalence relations. Let L be the category of local ringed spaces [6]: objects in L are local ringed spaces and morphisms in L are morphisms of local ringed spaces.

Definition 1. A commutative diagram of morphisms in L:

\[
\begin{array}{ccc}
Z & \xrightarrow{b} & P \\
\downarrow{s} & & \downarrow{a} \\
X & \xrightarrow{r} & Y
\end{array}
\]

is called a pushout (and P is called the pushout for r and s), if for any object A and morphisms $u : Y \to A$, $v : Z \to A$ in L with $v \circ s = u \circ r$, there exists the unique morphism $p : P \to A$ such that $p \circ b = v$ and $p \circ a = u$.

Let (X, X^0) be a (reduced) analytic space and R an equivalence relation on X. Then there exists the local ringed quotient space $(X/R, X^0/R)$ and the natural projection $p : X \to X/R$ is a morphism of local ringed spaces, where X/R is the quotient topological space of X by R and X^0/R, the structure sheaf on X/R, is defined as follows: for any open set $U \subseteq X/R$, $(X^0/R)(U) := \{ f : U \to \mathbb{C}, f \circ p \in \Gamma(p^{-1}(U), X^0) \}$.

Definition 2. An equivalence relation R on X is called proper if for any compact set $K \subseteq X$, the R-saturated set $R(K)$ (i.e. the union of all equivalence classes meeting K) is also compact.

This condition is equivalent that X/R is locally compact and the natural projection $p : X \to X/R$ is proper.

Definition 3. Let A be a subset of X and R an equivalence relation on A. The trivial extension \tilde{R} of R to X, an equivalence relation on X, is defined by
EQUIVALENCE RELATIONS ON ANALYTIC SPACES

\[\widetilde{R}(x) := \begin{cases} R(x), & \text{for } x \in A, \\ \{x\}, & \text{for } x \notin A, \end{cases} \]

where \(R(x), x \in A, \) denotes the equivalence class by \(R \) containing \(x. \)

Let \((A, A^0) \) be a nowhere dense analytic set of \((X, x^0) \) and \(R \) an equivalence relation on \(A. \) Then we have the local ringed quotient spaces \((A/R, A^0/R), (X/R, x^0/R). \) Let \(p: A \to A/R, \) \(\widetilde{p}: X \to X/R \) be natural projections and \(i: A \to X \) the injection. Then there exists the canonical mapping \(j: A/R \to X/R \) \((\widetilde{p} \circ i = j \circ p) \) and \(j \) is a morphism in \(L. \)

Lemma 1. \(X/R \) is the pushout for \(i \) and \(p \) in \(L. \)

Proof. For any object \(Z \) and morphisms \(u: A/R \to Z, \) \(v: X \to Z \) in \(L \) with \(v \circ i = u \circ p, \) we define the mapping as follows: for any \(\widetilde{x} \in X/R, \) we put \(\varphi(\widetilde{x}) := v(x) \) \((x \in \widetilde{p}^{-1}(\widetilde{x})). \) Then this is well defined. In fact \(\widetilde{p}(x) = \widetilde{p}(x') \) \((x, x' \in X) \) implies \(v(x) = v(x'). \) Now \(\varphi \) is continuous with \(v = \varphi \circ \widetilde{p}, \) and \(u = \varphi \circ j \) since \(u \circ p = \varphi \circ j \circ p \) and \(p \) is surjective.

For any \(f \in \mathcal{O}_X(X/R), \) there exists \(f \in (\mathcal{O}_X(X/R))_x \) with \(u_x^*(f) = \widetilde{f} \circ \widetilde{p}. \) And we put \(\varphi_x^*(f) := \widetilde{f}. \) Then \(\varphi^* \) holds commutativity and is unique. Hence \(X/R \) is the pushout in \(L \) for \(i \) and \(p. \) Q.E.D.

Definition 4. An analytic set \(A \subset X \) is called contractible in \(X \) if \(A \) is nowhere discrete, compact and if there exist an analytic space \(Y \) and a surjective proper holomorphic mapping \(\psi: X \to Y \) such that \(\psi(A) =: y_A \in Y \) and the restriction \(\psi(A - A) \to (Y - \{y_A\}) \) is biholomorphic.

Definition 5. An analytic set \(A \subset X \) is called retractable if there exists a holomorphic retraction of \(X \) to \(A \) (i.e. a surjective holomorphic mapping \(r: X \to A \) with \(r|A = \text{id}_A). \)

Definition 6. A morphism \(f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \) in \(L \) is called quasi-finite if for any \(x \in X, \mathcal{O}_{X,x}/(f_x^*(M_{f(x)})) \) is a finite dimensional vector space over \(\mathbb{C}, \) where \(M_{f(x)} \) is the maximal ideal of \(\mathcal{O}_{Y,f(x)}. \)

Let \((A, \mathcal{O}_A) \) be an analytic set in \((X, \mathcal{O}_X) \) and \(R \) a proper equivalence relation on \(A \) such that \(A/R \) is an analytic space. Using the results by B. Kaup [6] and the method of H. Kerner [8], we shall show the sufficient conditions under which \(X/R \) is an analytic space.
Theorem 1. \(X/\tilde{R} \) is an analytic space, if one of the following statements is satisfied:

1. \(R \) is finite (i.e. every equivalence class of \(A \) by \(R \) is a finite set).
2. \(A \) is contractible in \(X \) and the canonical mapping \(j: A/R \rightarrow X/R \) is quasi-finite.
3. \(A \) is contractible and retractable in \(X \).

Proof. (1) From Lemma 1, \(X/R \) is the pushout for the injection \(i: A \rightarrow X \) and the natural projection \(p: A \rightarrow A/R \). Hence, by B. Kaup [6, Satz 1.8], \(X/R \) is an analytic space.

(2) If \(A \) is contractible in \(X \), \(A \) is exceptional in \(A! \) in the sense of B. Kaup [6]. Hence, by Lemma 1 and B. Kaup [6, Aussage 1.11], \(X/R \) is an analytic space.

(3) \(\tilde{R} \) is proper since, for any compact set \(K \subset X \), \(\tilde{R}(K) = K \cup R(K) \) is also compact in \(X \).

By the assumption, there exist an analytic space \(Y \), a surjective proper holomorphic mapping \(\psi: X \rightarrow Y \) and a holomorphic retraction \(r: X \rightarrow A \). Then we have a surjective morphism \(\widetilde{r}: X/\tilde{R} \rightarrow A/R \) with \(\widetilde{r} \circ \widetilde{p} = p \circ r \). In fact, for any \(\tilde{x} \in X/\tilde{R} \), we put

\[\widetilde{r}(\tilde{x}) := p \circ r(x) \quad (x \in \widetilde{p}^{-1}(\tilde{x})). \]

Then \(\widetilde{r}: X/\tilde{R} \rightarrow A/R \) is well defined.

Now, we claim that \((X/\tilde{R}, \chi 0/\tilde{R})\) is locally morph-separable (i.e. for any \(\tilde{x} \in X/\tilde{R} \), there exists an open neighborhood \(U \subset X/\tilde{R} \) such that \(\Gamma(U, \chi 0/\tilde{R}) \) separates points of \(U \)). Then \((X/\tilde{R}, \chi 0/\tilde{R})\) is an analytic space by H. Cartan [1, Main Theorem].

Let \(\tilde{x} \) be a point of \(X/\tilde{R} \). We may assume that \(\tilde{x} \in \phi(A/R) \). Then there exists an open neighborhood \(V \) of \(x := \tilde{r}(\tilde{x}) \) such that \(\Gamma(V, \chi 0/\tilde{R}) \) separates points of \(V \) and also there exists an open neighborhood \(O \subset Y \) of \(\psi(A) \) such that \(\Gamma(O, \chi 0) \) separates points of \(O \). Since \(W := \psi^{-1}(O) \subset X \) is an open neighborhood of \(A \), we have \(\tilde{p}^{-1}(\tilde{p}(W)) = W \), hence \(\tilde{p}(W) \) is an open neighborhood of \(\tilde{x} \). Thus, so is \(U := \tilde{p}(W) \cap \tilde{r}^{-1}(V) \subset X/\tilde{R} \). We can show that \(U \) satisfies the above statement. Let \(\tilde{y}, \tilde{z} \) be any distinct points in \(U \). Then there exist two distinct points \(y, z \) in \(X \) such that \(\tilde{p}(y) = \tilde{y}, \tilde{p}(z) = \tilde{z} \). If \(\psi(y) \neq \psi(z) \), we have \(f \in \Gamma(O, \chi 0) \) with \(f \circ \psi(y) \neq f \circ \psi(z) \). And \(f \circ \psi \in \Gamma(W, \chi 0) \) is constant on \(A \). Put
EQUIVALENCE RELATIONS ON ANALYTIC SPACES

373

Then \(F(\tilde{w}) = \begin{cases} f \circ \psi \circ (p|W - A)^{-1}(\tilde{w}), & \text{for } \tilde{w} \in \tilde{p}(W - A), \\ f(y_A), & \text{for } \tilde{w} \in \tilde{p}(A). \end{cases} \)

Therefore \(F(\tilde{y}) \neq F(\tilde{z}) \). If \(\psi(y) = \psi(z) \), then \(y, z \in A \) and \(p(y) \neq p(z) \). Hence we have \(g \in \Gamma(V, A \circ \rho|/R) \) with \(g \circ p(y) \neq g \circ p(z) \). Put in \(U, G := g \circ \tilde{r} \); then \(G \in \Gamma(U, \chi 0|/R) \) with \(G(\tilde{y}) \neq G(\tilde{z}) \), since \(r: X \rightarrow A \) is a holomorphic retraction. Thus \((X/R, \chi 0|/R)\) is locally morph-separable. Q.E.D.

Remark 1. We can easily find the examples such that \(X/R \) is not an analytic space, in the case that \(R \) is not finite in (1), or \(A \) is not contractible in (2), (3) respectively.

Corollary 1. Let \((X, \chi 0), (A, \chi 0)\) and \(R \) be as in Theorem 1, (1) or (3). Then \(A/R \) is embedded in \(X/R \). In particular, in the case of (3), \(A/R \) is contractible and retractable in \(X/R \).

Proof. The canonical mapping \(j: A/R \rightarrow j(A/R) \) is a holomorphic homeomorphism since \(j \) is proper. We assert that for any \(\tilde{a} \in A/R \), \(j^\star_a: (\chi 0|/R)|\tilde{a}) \rightarrow (A \circ \rho|/R)|\tilde{a}) \) is surjective.

(1) For any \(f \in (A \circ \rho|/R)|\tilde{a}) \), we have \(p^a_\star(f) \in A \circ \rho_a \) \((a \in p^{-1}(\tilde{a})) \). Then there exists \(g \in \chi 0_a \) with \(j^\star_a(g) = p^a_\star(f) \). Since \(p \) is finite proper, we have \(G \in (\chi 0|/R)|\tilde{a}) \) with \(p^\star_a(G) = g \). Then it follows that \(j^\star_a(G) = f \).

(3) Since \(\tilde{r} \circ j = \text{id}_{A/R} \), surjectiveness of \(j^\star_a \) is evident and in particular \(\tilde{r} \) is a holomorphic retraction. Therefore \(A/R \) is retractable and contractible in \(X/R \). Q.E.D.

3. Applications. We now consider the following problem: Let \((X, \chi 0)\) and \((M, \chi 0)\) be analytic spaces, \(A \) a nowhere dense analytic set in \(X \) and \(h: A \rightarrow M \) a surjective proper holomorphic mapping. Then, does an analytic space \(Y \) exist with the following property (P)?

(P) There exist a surjective proper holomorphic mapping \(\tilde{h}: X \rightarrow Y \) and an injection \(j: M \rightarrow Y \) such that the restriction \(\tilde{h}|A = j \circ h \) and \(\tilde{h}|(X - A) \rightarrow (Y - \tilde{A}) \) \((\tilde{A} := \tilde{h}(A)) \) is biholomorphic.

Definition 7. We say that a reduced analytic space \(X \) is maximal if, for any open set \(U \subset X \) and a nowhere dense analytic set \(S \subset U \), every continuous function on \(U \) which is holomorphic on \(U - S \) is actually holomorphic on \(U \).

Remark 2. If an analytic space \((X, \chi 0)\) is maximal, \(\chi 0 \) is the maximal reduced complex structure on \(X \).

Let \(X, A \) and \(R \) be as in Theorem 1 (1) or (2) or (3). If \(X \) is maximal, so is \(X/R \).
Let R_h be the equivalence relation on A defined by $h: A \to M$ (i.e. for any $u, v \in A$, $u R_h v$ means $h(u) = h(v)$). Then R_h is proper and, if M is maximal we can show that $A/R_h, M$ are isomorphic. Thus from Theorem 1 and Corollary 1, we have

Theorem 2. If (1) or (3) in Theorem 1 is satisfied for X, A, R_h and M is maximal, there exists an analytic space Y with the property (P).

Corollary 2. Let X, A, M and R_h be as in Theorem 2. Suppose that X is maximal. Then any maximal analytic space Y' with the property (P) is biholomorphically equivalent to X/R_h.

Proof. Let $\widetilde{p}' : X \to Y'$ be a surjective proper holomorphic mapping and $j': A/R_h \to Y'$ an injection such that the restriction $\tilde{p}'|A = j' \circ p$ and $\widetilde{p}'|(X - A) \to (Y' - \tilde{p}'(A))$ is biholomorphic. Then, from Lemma 1, we have the unique holomorphic mapping $\psi: X/R_h \to Y'$ with $\tilde{p}' = \psi \circ \tilde{p}, j' = \psi \circ j$.

![Diagram](License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use)
M_2, $\text{pr}(x_1, x_2) = (x_1, x_2^0)$ for any $(x_1, x_2) \in M_1 \times M_2$, x_2^0 is a fixed point).

If φ is a holomorphic mapping of an analytic space X into an analytic space Y, we put f.m.d. $\varphi := \min_{x \in X} \text{dim}_x \varphi^{-1}(\varphi(x))$. Then using Lemma 2 and the assumption $\dim R_k(a) > 0$, we can prove the next lemma in almost like manner as in [8].

Lemma 3. Suppose that f.m.d. $r_k \geq 2$. Then $\tilde{A}_k := \tilde{p}_k(A_k)$ is the set of all singular points of X_k/R_k.

Theorem 3. Suppose that f.m.d. $r_2 \geq \dim A_1 + 2$. If X_1/R_1 and X_2/R_2 are analytically equivalent, the following diagrams $(k = 1, 2)$ are analytically equivalent.

Proof. We first show that

\[\text{f.m.d. } r_1 \geq \dim A_2 + 2 \]

in some open neighborhood of A_1.

By assumption, any point of A_k $(k = 1, 2)$ has an open neighborhood with the property stated in Lemma 2. Let O_k be the union of all such open neighborhoods. Then

\[\dim O_2 - \dim A_2 \geq \text{f.m.d. } r_2 \geq \dim A_1 + 2. \]

Since $\dim O_1 = \dim O_2$, it follows that

\[\text{f.m.d. } (r_1 | O_1) = \dim O_1 - \dim A_1 \geq \dim A_2 + 2. \]

Hence, by Lemma 3, $\tilde{A}_k := \tilde{p}_k(A_k)$ $(k = 1, 2)$ is the set of all singular points of X_k/R_k. Let $\psi : X_1/R_1 \rightarrow X_2/R_2$ be the biholomorphic mapping. Then $\psi(\tilde{A}_1) = \tilde{A}_2$, and there exists an open neighborhood $U_k \subset X_k/R_k$ of \tilde{A}_k with $U_k := \tilde{p}_k^{-1}(U_k) \subset O_k$.

We now assert that there exists a holomorphic mapping $\psi^- : U_1^- \rightarrow U_2^-$ such that $\psi \circ \tilde{p}_1 = \tilde{p}_2 \circ \psi^-$. We put

\[\psi^- := \psi | (U_1^- \setminus \tilde{A}_1) \rightarrow (U_2^- \setminus \tilde{A}_2), \]

\[\tilde{p}_k^- := \tilde{p}_k | (U_k^- \setminus A_k) \rightarrow (U_k^- \setminus \tilde{A}_k) \quad (k = 1, 2). \]
These mappings are biholomorphic. And we put, on $U_1^* - A_1$, $\tau := r_2 \circ (\widetilde{P}_2)^{-1} \circ \psi^* \circ \widetilde{P}_1^*$. Then $\tau: (U_1^* - A_1) \to A_2$ is also holomorphic. Since f.m.d. $\tau \geq \dim A_1 + 2$ on $U_1^* - A_1$, we have the holomorphic mapping $\widetilde{\tau}: U_1^* \to A_2$ such that $\widetilde{\tau}(U_1^* - A_1) = \tau$ [9, Satz 2]. Define the mapping $\psi^*: U_1^* \to U_2^*$ as follows:

$$
\psi^*(x) = \begin{cases}
(\widetilde{P}_2)^{-1} \circ \psi^* \circ \widetilde{P}_1^*(x), & \text{for } x \in U_1^* - A_1, \\
\iota_2 \circ \tau(x), & \text{for } x \in A_1,
\end{cases}
$$

where $\iota_2: A_2 \to U_2^*$ is the injection. Remark that $\widetilde{\tau} = r_2 \circ \psi^*$ on U_1^*.

Then we can show that $\psi^*: U_1^* \to U_2^*$ is continuous. To show this, it suffices to say that ψ^* is continuous at any $a \in A_1$, and hence, for any sequence $\{a_n\} \subset U_1^* - A_1$ which converges to a, $\{\psi^*(a_n)\}$ converges and $\lim_{n \to \infty} \psi^*(a_n) = \psi^*(a)$.

$\{\psi^*(a_n)\} = \{\widetilde{P}_2^{-1}(\psi \circ \widetilde{P}_1(a_n))\} \subset U_2^* - A_2$ has cluster points in U_2^* since \widetilde{P}_2 is proper, and they must be contained in A_2. Furthermore, the cluster points are unique and coincide with $\psi^*(a)$. In fact, if α is a cluster point of $\{\psi^*(a_n)\}$, we have a subsequence $\{a'_n\}$ of $\{a_n\}$ with $\lim_{n \to \infty} \widetilde{P}_2^{-1} \circ \psi \circ \widetilde{P}_1(a'_n) = \alpha$. Then

$$
\alpha = r_2(\alpha) = r_2 \left(\lim_{n \to \infty} \widetilde{P}_2^{-1} \circ \psi \circ \widetilde{P}_1(a'_n) \right) = \lim_{n \to \infty} r_2 \circ \widetilde{P}_2^{-1} \circ \psi \circ \widetilde{P}_1(a'_n) = \lim_{n \to \infty} \tau(a'_n) = \lim_{n \to \infty} \widetilde{\tau}(a'_n) = \widetilde{\tau}(a) = \psi^*(a).
$$

Hence $\lim_{n \to \infty} \psi^*(a_n) = \psi^*(a)$. Therefore ψ^* is continuous. Since U_k^* is a complex manifold ($k = 1, 2$) and $\psi^*| (U_1^* - A_1)$ is holomorphic on $U_1^* - A_1$, ψ^* is holomorphic on U_1^*. Further, $\psi \circ \widetilde{P}_1 = \widetilde{P}_2 \circ \psi^*$ on U_1^*.

To complete the proof of the theorem, it suffices to show that ψ^* is bijective and its inverse is holomorphic. By (\ast), we also have the holomorphic mapping $(\psi^{-1})^*: U_2^* \to U_1^*$ such that $\psi^{-1} \circ \widetilde{P}_2 = \widetilde{P}_1 \circ (\psi^{-1})^*$ on U_2^*. Then it follows that
EQUIVALENCE RELATIONS ON ANALYTIC SPACES

Hence \(\psi^\wedge : U_1^\wedge \to U_2^\wedge \) is biholomorphic and, in particular, \(\psi^\wedge (A_1) = A_2 \). Therefore \(A_k, X_k \) and \(A_k/R_k \) \((k = 1, 2)\) are analytically equivalent respectively, and the two diagrams are analytically equivalent. Q.E.D.

REMARK 3. H. Kerner [8] has treated the case that \(r_k : X_k \to A_k \) \((k = 1, 2)\) is a weakly negative vector bundle and \(R_k(a) = A_k \) for any \(a \in A_k \).

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SAITAMA UNIVERSITY, URAWA, JAPAN