Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Symmetrizable and related spaces


Authors: Peter W. Harley and R. M. Stephenson
Journal: Trans. Amer. Math. Soc. 219 (1976), 89-111
MSC: Primary 54D55; Secondary 54E25
DOI: https://doi.org/10.1090/S0002-9947-1976-0418048-0
MathSciNet review: 0418048
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A study is made of a family of spaces which contains the symmetrizable spaces as well as many of the well-known examples of perfectly normal spaces.


References [Enhancements On Off] (What's this?)

  • [A1] R. Arens, Note on convergence in topology, Math. Mag. 23 (1950), 229-234. MR 12, 271. MR 0037500 (12:271h)
  • [A2] A. V. Arhangel'skiĭ, Mappings and spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 133-184 = Russian Math. Surveys 21 (1966), no. 4, 115-162. MR 37 #3534. MR 0227950 (37:3534)
  • [AU] P. Aleksandrov and P. Urysohn, 'On compact topological spaces,' in P. S. Urysohn, Works in topology and other fields of mathematics. Vol. 2, GITTL, Moscow, 1951, pp. 848-963. MR 14, 122.
  • [B1] T. K. Boehme, Linear s-spaces, Symposium on Convergence Structures, University of Oklahoma, 1965.
  • [B2] D. A. Bonnett, A symmetrizable space that is not perfect, Proc. Amer. Math. Soc. 34 (1972), 560-564. MR 45 #4343. MR 0295275 (45:4343)
  • [FH] G. D. Faulkner and P. W. Harley III, Metrization of symmetric spaces, Canad. J. Math. 27 (1975). MR 0413055 (54:1176)
  • [F1] V. V. Filippov, On perfectly normal bicompacta, Dokl. Akad. Nauk SSSR (1969), 736-739 = Soviet Math. Dokl. 10 (1969), 1503-1507. MR 41 #1006. MR 0256350 (41:1006)
  • [F2] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. MR 31 #5184. MR 0180954 (31:5184)
  • [F3] -, Spaces in which sequences suffice, II, Fund. Math. 61 (1967), 51-56. MR 36 #5882. MR 0222832 (36:5882)
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [G1] J. W. Goldston, Topologies determined by classes of nets, Doctoral Dissertation, University of North Carolina, Chapel Hill, N. C., 1975.
  • [G2] J. W. Green, Moore-closed spaces, completeness and centered bases, General Topology and Appl. 4 (1974), 297-313. MR 0365502 (51:1754)
  • [H] R. W. Heath, Semi-metric spaces and related spaces, Proc. Arizona State University Topology Conference, 1967.
  • [HM] R. W. Heath and E. A. Michael, A property of the Sorgenfrey line, Compositio Math. 23 (1971), 185-188. MR 44 #4719. MR 0287515 (44:4719)
  • [J] F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), 671-677. MR 1563615
  • [JKR] I. Juhasz, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces (to appear). MR 0428245 (55:1270)
  • [M] E. Michael, Local compactness and Cartesian products of quotient maps and k-spaces, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 281-286. MR 39 #6256. MR 0244943 (39:6256)
  • [N1] S. I. Nedev, Symmetrizable spaces and final compactness, Dokl. Akad. Nauk SSSR 175 (1967), 532-534 = Soviet Math. Dokl. 8 (1967), 890-892. MR 35 #7293. MR 0216460 (35:7293)
  • [N2] V. Niemytzki, Über die Axiome des metrischen Raumes, Math. Ann. 101 (1931), 666-671. MR 1512692
  • [N3] J. Novák, Sur les espaces (L) et sur les produits cartésiens (L), Publ. Fac. Sci. Univ. Massaryk 1939, no. 273. MR 1, 221.
  • [O] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (to appear). MR 0438292 (55:11210)
  • [S] R. M. Stephenson, Jr., Discrete subsets of perfectly normal spaces, Proc. Amer. Math. Soc. 34 (1972), 605-608. MR 45 #5944. MR 0296885 (45:5944)
  • [T] F. D. Tall, An alternative to the continuum hypothesis and its uses in general topology (to appear).
  • [V] J. E. Vaughan, Lexicographic products and perfectly normal spaces, Amer. Math. Monthly 78 (1971), 533-536. MR 1536336
  • [W] W. A. R. Weiss, Countably compact, perfectly normal spaces may or may not be compact, Notices Amer. Math. Soc. 22 (1975), A-334.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54D55, 54E25

Retrieve articles in all journals with MSC: 54D55, 54E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0418048-0
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society