THE MULTIPLICITY FUNCTION OF A LOCAL RING

BY

JAMES HORNELL

ABSTRACT. Let A be a local ring with maximal ideal m. Let $f \in A$, and define $\mu_A(f)$ to be the multiplicity of the A-module A/Af with respect to m. Under suitable conditions $\mu_A(fg) = \mu_A(f) + \mu_A(g)$. The relationship of μ_A to reduction of A, normalization of A and a quadratic transform of A is studied. It is then shown that there are positive integers n_1, \ldots, n_s and rank one discrete valuations ν_1, \ldots, ν_s of A centered at m such that $\mu_A(f) = n_1 \nu_1(f) + \cdots + n_s \nu_s(f)$ for all regular elements f of A.

Let A be a nonnull noetherian local ring with maximal ideal m. Let d be the (Krull) dimension of A, the maximal length of a chain of prime ideals of A, excluding A. Let k be the residue field A/m, and let G_mA be the associated graded ring of A with respect to m.

Let $f \in A$. If A/Af is of dimension $d - 1$ define $\beta_A(f)$ to be $e_m(A/Af)$, the multiplicity of the A-module A/Af relative to m in dimension $d - 1$ ([6, p. V-2] or the multiplicity of the local ring A/Af ([7, p. 294], or [3, p. 75])). If A/Af is of dimension d, define $\beta_A(f)$ to be ∞. Call $\beta_A(f)$ the multiplicity of f (at m in A).

If A is a regular local ring, μ_A is known to be the order valuation of A [3, 40.2, p. 154]. If A is entire $\beta_A(fg) = \beta_A(f) + \beta_A(g)$ (Proposition 1, §1). The order function ν_A of A [7, p. 249] satisfies $\nu_A(f + g) \geq \min \{\nu_A(f), \nu_A(g)\}$, and (Proposition 2, §1) ν_A is a valuation if and only if μ_A is a multiple of ν_A.

If the ideal (0) is unmixed in A, μ_A is found to extend to the components of A (Lemma 2, §2). If A is of dimension one, μ_A is found to extend to the normalization of A (Lemma 3, §2). The extension of A to the first neighborhood ring of A (a quadratic transform of A) is found to preserve μ_A (Lemma 4, §3).

This is used to prove the theorem of §4, that there are positive integers n_1, \ldots, n_s and discrete rank one valuations ν_1, \ldots, ν_s of A centered at m such that for every regular element f of A

$$
\mu_A(f) = n_1 \nu_1(f) + \cdots + n_s \nu_s(f).
$$

Received by the editors September 19, 1974.

Copyright © 1976, American Mathematical Society
The valuations \(v_1, \ldots, v_s \) arise from (dimension one) normalization of the first neighborhood ring of \(A \), and each \(n_i \) is the product of the length of a primary component of \((0)\) in \(A \) of dimension \(d \), the multiplicity of a \(d \)-dimensional component of the tangent cone of \(A \) at the origin, the index of a normalization and another factor arising from a nonfinite normalization of an entire local ring of dimension one.

Let \(p \) be a prime ideal of the noetherian ring \(A \). The \textit{depth} of \(p \) will denote throughout the Krull dimension of \(A/p \).

1. Elementary properties of \(\mu_A \). For an \(A \)-module \(M \) let \(l_A(M) \) denote the length of \(M \) as an \(A \)-module. If \(p \) is a prime ideal of \(A \) and if \(\mathfrak{U} \) is an ideal of \(A \) let

\[
\lambda_p(\mathfrak{U}) = l_A_p(A_p/\mathfrak{U} \mathfrak{U}).
\]

Proposition 1. Let \(f \) and \(g \) be two elements of a local ring \(A \), and assume either that \(f \) is a regular element of \(A \) or that \(\mu_A(f) = \infty \). Then

\[
\mu_A(fg) = \mu_A(f) + \mu_A(g).
\]

Proof. If \(\mu_A(f) = \infty \), then \(f \) and \(fg \) are contained in a prime ideal of \(A \) of depth \(d \), and \(\mu_A(fg) = \infty \).

Let \(f \) be a regular element of \(A \) and assume that \(\mu_A(g) \) is finite. By [6, p. V-3], for any \(h \in A \) such that \(\mu_A(h) \) is finite,

\[
\mu_A(h) = \sum_p \lambda_p(Ah) e_m(A/p)
\]

where the sum ranges over all prime ideals \(p \) of \(A \) of depth \(d - 1 = \dim A - 1 \),

\[
0 \to A|f|/Afg \to A|f|g/fg \to A|f|/Af \to 0
\]

is exact, \(A|f|/Afg \cong A/Ag \) as \(A \)-modules, \(\lambda_p(Afg) = \lambda_p(Af) + \lambda_p(Ag) \), and the proposition follows.

Remark. Let \(A = k[x, y]_{(x, y)} = k[X, Y]/(X^2, XY) \). By direct computation \(\mu_A(y) = 3 \) and \(\mu_A(y^2) = 5 \). Thus \(\mu_A(fg) \) need not be \(\mu_A(f) + \mu_A(g) \) if neither \(f \) nor \(g \) is regular and if both \(\mu_A(f) \) and \(\mu_A(g) \) are finite.

Proposition 2. Let \(A \) be an entire local ring and suppose the order function \(v_A \) of \(A \) is a valuation. Then

\[
\mu_A = \em(A) v_A.
\]

Proof. \(G_m A \) is entire, and if \(f \) is a nonzero element of \(A \), \(f \) is superficial of degree \(v_A(f) \). Thus [7, Lemma 4, p. 286], \(\mu_A(f) = \em(A/|Af|) = \em(A) \cdot v_A(f) \).

Corollary. If \(A \) is a regular local ring then \(\mu_A \) is the order valuation.
Remark. Let A be an entire local ring of dimension one and suppose the order function v_A of A is a valuation. Then $\mathcal{G}_m A$ is an entire graded ring over $k = A/m$ of dimension one which must be the polynomial ring in one variable over k, $\dim_k m/m^2 = 1$, A is therefore a regular local ring, and $\mu_A = v_A$.

The following proposition gives a geometric definition of μ_A. The local ring A is said to be affine if it is the homomorphic image of a localization of a polynomial ring over a field.

Proposition 3. Let A be an entire affine local ring which has an infinite residue field $k = A/m$. Then A is the homomorphic image of an affine regular local ring B. Let p be the kernel of this homomorphism of B onto A, which is local, and notice that B is equicharacteristic with residue field k. Let d be the dimension of A. Then for every regular element f of A,

$$\mu_A(f) = \min_{f_1, \ldots, f_d-1} \{ i(Z(B/p) \cdot Z(B/Bf_1) \cdots Z(B/Bf_{d-1}) \cdot Z(B/Bf), m) \}$$

where the minimum is taken over all $f_1, \ldots, f_{d-1} \in A$ for which the intersection is proper. For the definition and notation of the right-hand side of the equation see [1] and [6, §V–C].

Remark. By applying Lemma 2, §2 to $\mu_A(f) = e_{(f_1, \ldots, f_{d-1})}(A)$, by the additivity of $Z(B/p)$ and the linearity of $i(\cdot, m)$, the hypothesis that A be entire may be dropped from Proposition 3.

Remark. This proposition does not necessarily hold if the residue field is finite. For let k be the field of p^n elements, and let $A = k[X_1, X_2]$. Letting μ' denote the formula of the right-hand side of the equality of the proposition, $\mu'(X_2(\Pi_{a \in k}(X_1 - aX_2))) = p^n + 2$, whereas $\mu_A(X_2(\Pi_{a \in k}(X_1 - aX_2))) = p^n + 1$.

Proof of Proposition 3.

$$\mu_A(f) = e_{(f_1, \ldots, f_{d-1})}(A/\mathfrak{A})$$

for some $f_1, \ldots, f_{d-1} \in m$ [7, Theorem 22, p. 294]

$$= \min_{f_1, \ldots, f_{d-1}} \{ e_{(f_1, \ldots, f_{d-1})}(A/\mathfrak{A}) \}$$

where (f_1, \ldots, f_{d-1}) is an open ideal of A/\mathfrak{A} [7, Lemma 2, p. 285]. The elements f_1, \ldots, f_{d-1} have representatives in B and in A, and consider f_1, \ldots, f_{d-1} to be in either B, A or A/\mathfrak{A}.

Let N be the maximal ideal of B, let \hat{B} be the N-adic completion of B, and let $\hat{p} = \hat{B}p$. $\hat{A} = \hat{B}/\hat{p}$. $\hat{B} \simeq k[[X_1, \ldots, X_n]]$ for some n. Let $(\hat{f}_1, \ldots, \hat{f}_{d-1})$ be an open ideal of A/\hat{A}.
324 JAMES HORNELL

\[e(f_1, \ldots, f_{d-1})(A/Af) = e(f_1, \ldots, f_{d-1}, f)(A) \]

([4, p. 300] for \((0) : A A f) = (0)\)

\[= e(f_1, \ldots, f_{d-1}, f)(\mathcal{B}[\hat{p}]) \]

\[= e(f_1 \otimes 1, \ldots, f_{d-1} \otimes 1, f \otimes 1) \]

\[(((\mathcal{B} \otimes_k \mathcal{B}[\hat{p}])(X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n)) \]

\[= e(X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1, f \otimes 1)(\mathcal{B} \otimes_k \mathcal{B}[\hat{p}]) \]

[4, p. 300], for \(X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n\) is a prime sequence in \(\mathcal{B} \otimes_k \mathcal{B}[\hat{p}]\) as will be shown below. As will also be shown below, \(f_1 \otimes 1, \ldots, f_{d-1} \otimes 1, f \otimes 1\) is a prime sequence in \(\mathcal{B} \otimes_k \mathcal{B}[\hat{p}]\). The above equality may now be continued.

\[e(f_1, \ldots, f_{d-1})(A/Af) \]

\[= e(X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n)(\mathcal{B}[f_1, \ldots, f_{d-1}, f)(\mathcal{B}[\hat{p}]) \]

[4, p. 300] \[= \chi(B(f_1, \ldots, f_{d-1}, f), B[p]) \]

[6, p. V-12]

\[= \psi(Z(B[p]) \cdots Z(B[Bf]) \cdots Z(B[Bf_d]) \cdots Z(Bf), m) \]

[6, p. V-20].

It must be shown that \(X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n\) is a prime sequence in

\(\mathcal{B} \otimes_k \mathcal{A} \approx (\cdots ((\mathcal{A}[[X_1]])[[X_2]]) \cdots)[[X_n]].\)

By induction, it follows from the fact that \(X_1 - \alpha\) is a regular element of \(R[[X_1]]\) for any \(\alpha \in R\) where \(R\) is a noetherian ring.

It must also be shown that \(f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1\) is a prime sequence in \(\mathcal{B} \otimes_k \mathcal{A}\). \((f, f_1, \ldots, f_{d-1})\) has height \(d\) in \(B\), so \(f, f_1, \ldots, f_{d-1}\) is a prime sequence in \(B\). Let \(R\) and \(S\) be two rings containing as a subring the field \(k\), and let \(\alpha\) be a regular element of \(R\). \(0 \rightarrow R \rightarrow R \rightarrow R \otimes_k S \rightarrow S\) is exact, and \(\alpha \otimes 1\) is a regular element of \(R \otimes_k S\). It follows immediately that \(f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1\) is a prime sequence of \(B \otimes_k A\). If \(R\) is a Zariski ring and if \(\widehat{R}\) is the completion of \(R\), then \(f_1, \ldots, f_{d-1}\) is a prime sequence in \(R\) if and only if \(f_1, \ldots, f_d\) is a prime sequence in \(\widehat{R}\) [7, Chapter VIII, §5]. \(A\) and \(B\) are affine over \(k\), so \(B \otimes_k A\) is noetherian, and \(B \otimes_k A\) is a Zariski ring with completion \(\mathcal{B} \otimes_k \mathcal{A}\). Thus \(f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1\) is a prime sequence in \(\mathcal{B} \otimes_k \mathcal{A}\).

2. The behavior of \(\mu_A\) under reduction of \(A\) and integral extension of \(A\). Let \(A\) be a nonimbedded local ring (the associated prime ideals of \(0\) in \(A\) are all
THE MULTIPLICITY FUNCTION OF A LOCAL RING

Let IA be the integral closure of A contained in QA, the total quotient ring of A. The minimal (height zero) prime ideals of A, IA and QA are in a bijective correspondence. Let N be a minimal prime ideal of A. Then $\lambda_N(0) = \lambda_{(IA)N}(0) = \lambda_{(QA)N}(0)$, and $IA/N = IA/IN$ where $IN = (IA)N$. $IA \simeq A'_1 \oplus \cdots \oplus A'_n$ where $I(A'_i) = A'_i$ and A'_i has a unique minimal prime ideal N'_i.

$$A'_1 \oplus \cdots \oplus A'_{i-1} \oplus N'_i \oplus A'_{i+1} \oplus \cdots \oplus A'_n = IN_i$$

for $i = 1, \ldots, n$ are the minimal prime ideals of IA. Thus a maximal ideal of IA contains a unique minimal prime ideal.

Lemma 1. Let A be a dimension one nonimbedded local ring with maximal ideal m. Let IA be the integral closure of A in its total quotient ring QA. There are only a finite number of prime ideals m_1, \ldots, m_s of IA lying over m, and the indices $[IA/m_i : A/m]$ are finite for $i = 1, \ldots, s$. Let $A_i = (IA)_{m_i}$.

If f is an element of A,

$$l_A(A/af) = \sum_{i=1}^{s} n_i \lambda_{N'_i}(0) [IA/m_i : A/m] l_{A_i}(A_i/af)$$

the n_i being positive integers depending only upon A/N where N is the nil radical of A.

If IA/IN is a noetherian A-module, then $n_i = 1$ for $i = 1, \ldots, s$. The n_i may be greater than one, for in Nagata’s example [3, E 3.2, p. 206], $s = 1$ and $n_1 = p$.

Proof. It may be assumed that f is a regular element of A, for otherwise both sides of the equality are infinite. Let B be a finite A-submodule of IA, and let $a \in A$ be regular and such that $aB \subset A$.

$$l_A(B/af) = l_A(Ba/Baf) = l_A(A/af) - l_A(A/Ba) - l_A(Baf/Aaf)$$

$$= l_A(A/af) + l_A(A/af) - l_A(A/Ba) - l_A(Ba/Af)$$

$$= l_A(A/af).$$

By [3, Theorem 21.2, p. 70], or by the first part of the proof of [7, Theorem 24, p. 297],

$$l_A(A/af) = \sum_{i=1}^{s} [B/p_i : A/m] l_B(B/p_i/B_{p_i}f)$$

where p_1, \ldots, p_s are the prime ideals of B lying over m. There are a finite number of prime ideals in IA lying over m, for $s_B \leq l_A(A/af)$. Let m_1, \ldots, m_s be the maximal ideals of IA. Note that

$$l_A(\text{dir lim}_i M_i) \leq \max_i \{l_A(M_i)\},$$

$IA/m_i = \text{dir lim}_B B/B \cap m_i$ and $[IA/m_i : A/m]$ is finite.
Let \(\alpha_i \in IA \) be such that \(\alpha_i \in m_i \) and \(\alpha_i \notin \bigcup_{j \neq i} m_j \). Let \(\beta_1, \ldots, \beta_t \in IA \) be such that

\[
[A[\beta_1, \ldots, \beta_t]/(m_i \cap A[\beta_1, \ldots, \beta_t]) : A/m] = [IA/m_i : A/m]
\]

for \(i = 1, \ldots, s \). Let \(A' = A[\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_t] \). By the formula above, letting \(A \) be \(A' \cap m_i \), it can be assumed that \(s = 1 \) and \([IA/m_i : A/m] = 1\). Then for a finite extension \(B \subset IA \) of \(A \), \(l_A(A/Af) = l_B(B/Bf) \). The nil radical \(N \) of \(A \) is now a prime ideal.

First assume that \(I(A/N) \) is a noetherian \(A/N \)-module. By a finite extension of \(A \) in \(IA \) it can be assumed that \(A/N \) is normal, and thus that \(A/N \) is a regular local ring of dimension one [3, Theorem 33.2, p. 115 and Theorem 21.4, p. 40]. Let \(x \in m/N \) generate \(m/N \) in \(A/N \). Let

\[
(0) = N_0 \subset N_1 \subset \cdots \subset N_{t-1} = NA \subset N_t = A_N
\]

be a composition series of \(A_N \) over \(A_N \), and let \(n_i = A \cap N_i \). \(n_i/n_{i-1} \) is a principal \(A/N \)-module: If \(\alpha_1, \ldots, \alpha_q \in n_i/n_{i-1} \) are nonzero and generate \(n_i/n_{i-1} \) as an \(A \) or \(A/N \)-module, there are \(v, v_j \in A \sim N \) such that \(v_j \alpha_j = v_0 \alpha_1 \) for \(j = 1, \ldots, q \) (for there is a bijective correspondence between the ideals of \(A_N \) and their contractions in \(A \)). Viewed as \(A/N \)-modules, \(\alpha_i = u_jx^j\alpha_1 \) where \(u_j \) is a unit in \(A/N \) and where \(t_j \) is an integer. Let \(t_k = \min \{t_1, \ldots, t_q\} \).

Let \(n_i/n_{i-1} = A\alpha_k \). So there are \(a_1, \ldots, a_t \in N \) with \(n_i = (a_1, \ldots, a_t) \). For \(i = 1, \ldots, t \),

\[
0 \to \frac{n_i + Af}{n_{i-1} + Af} \to \frac{A}{n_{i-1} + Af} \to \frac{A}{n_i + Af} \to 0
\]

is exact. Map \(A \to (n_i + Af)/(n_{i-1} + Af) \) by \(y \mapsto ya_i + (f, a_1, \ldots, a_{i-1}) \). Suppose \(ya_i \in (f, a_1, \ldots, a_{i-1}) \). There are \(c, c_1, \ldots, c_{i-1} \in A \) such that \(cf = c_1a_1 + \cdots + c_{i-1}a_{i-1} - ya_i \), \(y \notin N \) and \(n_i \) is \(N \)-primary because it is the contraction of an \(A_N \)-primary ideal, so \(c \in (a_1, \ldots, a_i) \). Thus there is an element \(b \) of \(A \) such that \(ya_i - ba_j \in (a_1, \ldots, a_{i-1}) \), \(a_i \notin (a_1, \ldots, a_{i-1}) \) which is \(N \)-primary, so \(y - bf \in N \). Hence

\[
(n_i + Af)/(n_{i-1} + Af) \simeq A/(N + Af),
\]

and

\[
l_A(A/Af) = \lambda_N(0) l_{A/N}(A/(N + Af)) = \lambda_N(0) l_{IA/IN}(IA/IA \cdot f).
\]

Now drop the assumption that \(I(A/N) \) is a finite \(A/N \)-module. Let \(\hat{A} \) be the \(m \)-adic completion of \(A \). \(l_{\hat{A}}(A/Af) = l_{\hat{A}}(\hat{A}/\hat{A}f) \). The pair \(A, m \) is a Zariski ring, so \((A/N)^\wedge \simeq \hat{A}/\hat{N} \). \(\hat{A} \) and \(\hat{N} \) are unmixed [7, Chapter VIII, §4]. Letting \(M_j \) be a minimal prime ideal of \(\hat{A} \), \(I(\hat{A}/M_j) \) is a finite \(\hat{A}/M_j \)-module [3, Theorem 32.1, p. 112]. By the finite case above
THE MULTIPLICITY FUNCTION OF A LOCAL RING

\[l_{\mathcal{A}}(\mathcal{A}/\mathcal{A}f) = \sum_{i} \lambda_{M_{i}}(0) l_{\mathcal{A}/M_{i}}((\mathcal{A}/M_{i}))/((\mathcal{A}/M_{i})f). \]

A \subseteq \mathcal{A} \subseteq \mathcal{A}_{M_{i}} canonically. Let

\[(0) = N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{t-1} = A_{N} N \subseteq N_{t} = A_{N}

be a composition series of A_{N}. N_{t} \otimes_{A_{N}} \mathcal{A}_{M_{i}} can be refined into a composition series for A_{M_{i}}. Now N_{j}/N_{j-1} \cong A_{N}/A_{N} N_{j}, this completion and localization are exact, so N_{j}/N_{j-1} \otimes_{A_{N}} A_{M_{i}} are all isomorphic for i = 1, \ldots, t of length

\[\lambda_{M_{j}}(N_{j}) = l_{(\mathcal{A}/N)_{M_{j}}/(\mathcal{A}/N)f}, \]

and \(\lambda_{M_{j}}(0) = \lambda_{N}(0) \lambda_{M_{j}}(N_{j}) \). Thus

\[l_{\mathcal{A}}(\mathcal{A}/\mathcal{A}f) = \lambda_{N}(0) l_{\mathcal{A}/N}((\mathcal{A}/N}/(\mathcal{A}/N)f), \]

and it follows that

\[l_{\mathcal{A}}(A/\mathcal{A}f) = \lambda_{N}(0) l_{A/IN}(A/(N + A)f). \]

\(I(A/N) = I/A/IN \), and \(I/A/IN \) is a regular local ring of dimension one [3, Theorem 33.2, p. 115 and Theorem 12.4, p. 40]. Let \(x \) be a generator of the maximal ideal \(m_{1} \) of \(I \) and let \(u \) be a unit in \(IA \) such that for some integer \(n \), \(f = ux^{n} \). By a finite extension of \(A \) it may be assumed that \(u \) and \(x \) are elements of \(A \). To finish the proof, notice that \(l_{I}(I/IAx) = 1 \) and \(IN \subseteq (IA)x \) so that

\[\frac{l_{A/IN}(A/(A/N)/(A/N)f)}{l_{IA}(I/IAx)} = l_{A/IN}(A/(A/N)-(A/N)x). \]

Let \(n_{1} = l_{A/IN}(A/(A/N)-(A/N)x). \)

Lemma 2. Let \(A \) be a local ring with maximal ideal \(m \), let \(N_{1}, \ldots, N_{n} \) be the prime ideals of \(A \) of depth \(d = \dim A \). For every regular element \(f \) of \(A \)

\[\mu_{A}(f) = \sum_{i=1, \ldots, n} \lambda_{N_{i}}(0) \mu_{A/N_{i}}(f + N_{i}). \]

Proof. If \(\dim A = 0 \), the formula holds trivially. Let \(p \) be a prime ideal of \(A \) of depth \(d - 1 \) and containing \(f \). Then \(B = A_{p} \) is of dimension one and is nonimbedded, for \(f \) is a regular element. Note that if \(N_{i} \subseteq p \), then \(\lambda_{N_{i}}(0) = \lambda_{BN_{i}}(0) \). By Lemma 1, applied to \(B \) and to \(B/BN_{i} \) for \(N_{i} \subseteq p \),

\[l_{B}(B/Bf) = \sum_{N_{i} \subseteq p} \lambda_{N_{i}}(0) l_{B/BN_{i}}((B/BN_{i})/(B/BN_{i})f), \]

and by [6, p. V-3],

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\mu_A(f) = \sum_p l_p(A/A_f) e_m(A/p) = \sum_i \lambda_{N_i}(0) l_{p|N_i}(A/N_i) e_m(A/p) = \sum_{i=1}^s \lambda_{N_i}(0) \mu_{A/N_i}(f + N_i). \]

Lemma 3. Let \(A \) be a dimension one local ring with maximal ideal \(m \), let \(m_1, \ldots, m_s \) be the prime ideals of \(I_A \) lying over \(m \), and let \(A_i = I_A m_i \). For every regular element \(f \) of \(A \),

\[\mu_A(f) = \sum_{i=1}^s \lambda_{N_i}(0)n_i[I_A/m_i : A/m]\mu_A(f) \]

for some positive integers \(n_1, \ldots, n_s \) where \(N_i \) is the minimal prime ideal of \(A_i \).

This is a restatement of Lemma 1. (If \(A \) is imbedded, the only regular elements of \(A \) are the units, and the formula holds trivially.)

Remark. Lemma 3 does not necessarily hold if the dimension of \(A \) is greater than one. Let

\[A = k[w, x, y, z]((w, x, y, z)) = k[W, X, Y, Z]((W, X, Y, Z)) \]

where \(k \) is a field. By direct computation \(\mu_A(x) = 9 \) and \(\mu_A(y) = 6 \).

Thus \(\mu_{IA}(x) = \mu_{IA}(y) = 3 \). By the Corollary of Proposition 2, \(\mu_{IA} = v \) where \(v \) is the order valuation of \(k[s, t]((s, t)) \) having valuation ring \(k(s/t)[t]((t)) \). \(\mu_A = v + w \) where \(w \) is the valuation having valuation ring \(k(t/s^2)[s]((s)) \). (See §4.)

3. The first neighborhood ring of \(A \): a quadratic transform of \(A \) which is compatible with \(\mu_A \). Let \(G_m A \) be the associated graded ring of \(A \) with respect to \(m \). Let \(m = (x_1, \ldots, x_n) \). The natural homomorphisms

\[A[X_1, \ldots, X_n] \rightarrow k[X_1, \ldots, X_n] \rightarrow G_m A \]

(where \(k = A/m \)) will be used. Let \(A[X] \) denote \(A[X_1, \ldots, X_n] \), and let \(k[X] \) denote \(k[X_1, \ldots, X_n] \). I will denote the ideal \((X_1, \ldots, X_n)\) of \(A[X] \), \(k[X] \), and \(G_m A \).

A familiarity with Northcott’s *The neighborhoods of a local ring* [5] is assumed. For the definition of the first neighborhood ring \(P \) of \(A \), see [5, p. 361]. Let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_r \) be the height one prime ideals of \(\mathfrak{P} \) lying over \(m \), and let \(\mathfrak{p}_i \) be the prime ideal of \(G_m A \) corresponding to \(\mathfrak{p}_i \) [5, Propositions 1–4]. The preimage of \(\mathfrak{p}_i \) in \(k[X] \) will also be denoted by \(\mathfrak{p}_i \). For the definition of a superficial element of \(A \) see [5, p. 362], [3, p. 72 and Theorem 30.1, p. 103], or [7, p. 285].
Lemma 4. Let A be an entire local ring with maximal ideal m and an infinite residue field k. Let \mathfrak{p} be the first neighborhood ring of A, let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the height one prime ideals of \mathfrak{p} lying over m, let $\mathfrak{p}_i = \mathfrak{p}_i^\prime$, and let \mathfrak{p}_i be the prime ideal of \mathfrak{g}_m^A corresponding to \mathfrak{p}_i. Then

$$\mu_A(f) = e_f(\mathfrak{g}_m^A/\mathfrak{p}_1^i)\mu_{\mathfrak{p}_1}(f) + \cdots + e_f(\mathfrak{g}_m^A/\mathfrak{p}_r^i)\mu_{\mathfrak{p}_r}(f)$$

for all $f \in A$.

Proof. The equality is easily shown to hold for a superficial element of A. Let $f \in A$ be superficial of degree s. $\mu_A(f) = e_m(A/\text{Af}) = s e_m(A)$ [7, Lemma 4, p. 286], and

$$\mu_A(f) = s(e_f(k[X]/\mathfrak{p}_1)e_{\mathfrak{p}_1}(\mathfrak{p}_1/\mathfrak{p}_1^i m) + \cdots + e_f(k[X]/\mathfrak{p}_r)e_{\mathfrak{p}_r}(\mathfrak{p}_r/\mathfrak{p}_r^i m))$$

[5, formula E, p. 370]. Let x be a superficial element of A of degree one. $f/x^s \in \mathfrak{p}_i$, $\mathfrak{p}_i^i m = \mathfrak{p}_i x$ for $i = 1, \ldots, r$, and

$$\mu_A(f) = s(e_f(k[X]/\mathfrak{p}_1)\mu_{\mathfrak{p}_1}(x) + \cdots + e_f(k[X]/\mathfrak{p}_r)\mu_{\mathfrak{p}_r}(x))$$

$$= e_f(k[X]/\mathfrak{p}_1)\mu_{\mathfrak{p}_1}(f) + \cdots + e_f(k[X]/\mathfrak{p}_r)\mu_{\mathfrak{p}_r}(f).$$

The proof of the equality in general will occupy the rest of this section.

First let $\dim A \geq 2$. The proof will proceed by fixing the element $f \in A$ and blowing up A to a one-dimensional ring B such that $\mathfrak{p}_i^i = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r$ is an integral extension of B and such that $\mathfrak{g}_m^B(B/\text{Af})$ is nearly a linear section of $\mathfrak{g}_m^A(A/\text{Af})$.

Let ν_A be the order function of A with respect to m. Let x be a superficial element of A of degree one, let $m = (x_1, \ldots, x_n)$ and let Π be a form of degree one in $A[x_1, \ldots, x_n]$ with $x = \Pi(x_1, \ldots, x_n)$. Π will also denote its image modulo m in $k[x_1, \ldots, x_n]$. Consider the diagram,

$$\begin{array}{ccc}
A[x_1, \ldots, x_n] & \xrightarrow{\rho} & k[x_1, \ldots, x_n] \\
\downarrow{\chi} & & \downarrow{\psi} \\
A & \xrightarrow{\sigma} & \mathfrak{g}_m^A
\end{array}$$

where $\sigma(\xi) = (\xi + m^v_A(\xi) + 1)/m^v_A(\xi) + 1$, ψ is the canonical homomorphism and $k = A/m$, χ is the homomorphism with $\chi(X_i) = x_i$ and $\chi|_A = \text{id}_A$, and $\rho(F)$ is the leading form modulo m of F. $\sigma(Af)$ is an ideal of \mathfrak{g}_m^A, but σ need not be a homomorphism. Let $\tau Af = \psi^{-1}\sigma(Af)$, let $\omega Af = \chi^{-1}(Af) = (X_1 - x_1, \ldots, X_n - x_n, f)$, and let σAf denote $\sigma(Af)$.

$\rho(\omega Af) = \tau Af$. First notice that if $E \in \omega Af$ and $\deg E = \nu_A(\chi E) = s$ then $\psi E = \psi(E + m[X] + f^{s+1}) = E(x_1, \ldots, x_n) + m^{s+1}$. Secondly notice that $\psi^{-1}(0) = \tau Af \subset \rho(\omega Af)$. If $E \in \omega Af$ and if $\psi E = 0$ then $\rho E \in \psi^{-1}(0) \subset$
\(\rho(\omega A f) \). If \(E \in \omega A f \) and if \(\psi \rho E \neq 0 \) then \(\deg E = v_A(\chi E), \psi \rho E = \sigma \chi E \), and \(\rho E \in \tau A f \). Hence \(\rho(\omega A f) \subset \tau A f \). Let \(e \in A f \). Let \(E \in \omega A f \) be such that \(\deg E = v_A(e) \) and \(\chi E = e \). Then \(\sigma e = \psi \rho E, \rho E \in \psi^{-1}(\sigma e), \) and \(\tau A f \subset \rho(\omega A f) \).

Let \(p \) be an isolated prime ideal of \(\tau A 0 \). Then depth \(p = \dim A - \text{height } p \geq 2 \) and depth(\(p, \Pi \)) \(\geq 1 \).

Choose \(\Theta \) to be a form of degree one in \(A [X] = A [X_1, \ldots, X_n] \) such that \(y = \Theta(x_i) \) is a superficial element of \(A \) and a superficial element of \(A/\omega A f \), such that \(\Theta \) is contained in no isolated prime ideal of \((\rho, \Pi) \) for any isolated prime ideal \(p \) of \(\tau A 0 \), and such that \(y \) is contained in no associated prime ideal of \(A x \) other than possibly \(m \). Each condition is viewed as a condition on form ideals in \(k[\bar{X}] \). Let \(\Theta \) also denote its image modulo \(m \) in \(k[\bar{X}] \).

Let \(u = y/x \). Let \(P \) be the kernel of the canonical homomorphism of \(A [U] \) onto \(A [u] \) where \(A [U] \) is the polynomial ring in one variable and \(U \) maps to \(u \). \(P \cap A = (0) \), and it follows that \(P \) is of height one in \(A [U] \). Letting \(D_A \) denote the set of prime ideals of \(A \) which occur as an imbedded prime ideal of a proper principal ideal of \(A \) (see \([2, \S 6]\)), \(Q \in D_{A [U]} \) if and only if \(Q \cap A \in D_A \) and \(Q = (Q \cap A) \cdot A [U] \). \(y - x U \) is prime in \(A [U] \) if and only if \(x, y \) form a prime sequence in \(A \), but this is the case if and only if \(m \notin D_A \). If \(m \notin D_A \) then \(P = (y - x U) \), and \(P \subset m [U] \). If \(m \in D_A \) then \(P \) and \(m [U] \) are the associated prime ideals of \((y - x U) \). For if \(Q \) is an associated prime ideal of \((y - x U) \) of height greater than one then \(x, y \in Q \cap A \) and \(Q = m [U] \). If \(Q \) is of height one, either \(Q \cap A = q \neq (0), \) in which case \(Q = q [U] \) and \(x, y \in q \) which contradicts the choice of \(y \), or \(Q \cap A = (0) \) in which case \(Q = (Q A)[U] \cdot (y - x U) = P \). It again follows that \(P \subset m [U] \). So \(A [u]/m [u] \cong k [u] \), and \(\bar{u} = u + m \cdot A [u] \) is transcendental over \(k \).

Let \(S = A [u] \sim mA [u] \) and let \(B = S^{-1} A [u] \). \(B/mB \cong k(\bar{u}) \) a simple transcendental extension of \(k \). \(\dim A [U] = \dim A + 1 \), the kernel \(P \) of the homomorphism \(A [U] \rightarrow A [u] \) is height one, \(m [U] \) is of height equal to \(\dim A \), and \(\dim B = \dim A - 1 \). Consider \(G_{mA} B \) and the commutative diagram

\[
\begin{array}{ccc}
A[X_1, \ldots, X_n] & \xrightarrow{\rho} & B[X_1, \ldots, X_n] \\
\downarrow \rho & & \downarrow \rho \\
k[X_1, \ldots, X_n] & \xrightarrow{\psi} & k(\bar{u})[X_1, \ldots, X_n] \\
G_mA & \xrightarrow{\phi} & G_{mA} B \\
\end{array}
\]

where \(\phi \) is the canonical homomorphism induced by the inclusion \(A \subset B \). Define \(\sigma, \tau \) and \(\omega \) for \(B \) as was done for \(A \). Notice that \(\omega A f \subset \omega B f \), so \(\tau A f \subset \tau B f \). \(\Theta - \bar{u} \Pi \in \omega B f \). Let \(q \) be an associated prime ideal of \(\tau A f \) which is not \(I = (X_1, \ldots, X_n) \). If \(\Theta - \bar{u} \Pi \in k(\bar{u}) \cdot q \), then \(\Theta - \bar{u} \Pi \in k[\bar{u}] \cdot q \) and \(\Theta \in q \), which is
a contradiction to the superficiality of \(\vartheta \). Therefore \(\Theta - \bar{u} \Pi \notin k(\bar{u})q \), and \(\Theta - \bar{u} \Pi \) is superficial as an element of \(k(\bar{u})[X]/k(\bar{u}) \cdot \tau Af \).

Now \(\mu_A(f) = e_f(k[X]/\tau Af) \) and \(\mu_B(f) = e_f(k(\bar{u})[X]/\tau Bf) \). These modules are homogeneous and their lengths over \(k[X] \) or \(k(\bar{u})[X] \) are their dimensions over \(k \) or \(k(\bar{u}) \). Thus \(\mu_A(f) = e_f(k(\bar{u})[X]/k(\bar{u}) \cdot \tau Af) \). By Lemmas 3 and 4 of [7, pp. 285–286], if \(\dim A > 2 \),

\[
e_f(k(\bar{u})[X]/k(\bar{u}) \cdot \tau Af) = e_f(k(\bar{u})[X]/(\tau Af, \Theta - \bar{u} \Pi)),
\]

and if \(\dim A = 2 \),

\[
e_f(k(\bar{u})[X]/k(\bar{u}) \cdot \tau Af) = e_f(k(\bar{u})[X]/(\tau Af, \Theta - \bar{u} \Pi))
\]

\[-1^{k(\bar{u})[X]}((\tau \cdot \Theta - \bar{u} \Pi)/(\tau \cdot \tau Af))\]

for all large enough \(n \) and \(c \) with \(n > c \). Because \(\Theta - \bar{u} \Pi \) is contained in no associated prime ideal of \(k(\bar{u}) \cdot \tau Af \) other than possibly \(I \), the homogeneous parts of like degree of \(k(\bar{u}) \cdot \tau Af \) and of \((k(\bar{u}) \cdot \tau Af: \Theta - \bar{u} \Pi)/k(\bar{u}) \cdot \tau Af \) are equal for sufficiently large degree. So for large enough \(n \) and \(c \), over \(k(\bar{u}) \)

\[(\tau \cdot \tau Af: \Theta - \bar{u} \Pi)/(\tau \cdot \tau Af) = (k(\bar{u}) \cdot \tau Af: \Theta - \bar{u} \Pi)/k(\bar{u}) \cdot \tau Af,\]

and for \(\dim A = 2 \),

\[
\begin{align*}
e_f(k(\bar{u})[X]/k(\bar{u}) \cdot \tau Af) &= e_f(k(\bar{u})[X]/(\tau Af, \Theta - \bar{u} \Pi)) \\
\quad &\quad - \dim_{k(\bar{u})}(k(\bar{u}) \cdot \tau Af: \Theta - \bar{u} \Pi)/k(\bar{u}) \cdot \tau Af.
\end{align*}
\]

Let

\[
\alpha = \dim_{k(\bar{u})}\tau Bf/(\tau Af, \Theta - \bar{u} \Pi)
\]

and

\[
\beta = \dim_{k(\bar{u})}(k(\bar{u}) \cdot \tau Af: \Theta - \bar{u} \Pi)/k(\bar{u}) \cdot \tau Af.
\]

It is to be shown that \(\alpha = \beta \). Then \(\alpha \) is finite, for \(\beta \) is finite by the superficiality of \(\Theta - \bar{u} \Pi \), and it follows that if \(\dim A > 2 \), \(\mu_A(f) = \mu_B(f) \). If \(\dim A = 2 \) it follows from \(\alpha = \beta \) that \(\mu_A(f) = \mu_B(f) \).

If \(\mathcal{U} \) is a set of polynomials in \(X_1, \ldots, X_n \), let \(\mathcal{U}(d) \) be the set of all elements of \(\mathcal{U} \) which have no nonzero homogeneous component of degree strictly less than \(d \), and let \(\mathcal{U}_d \) be the set of all homogeneous elements of \(\mathcal{U} \) of degree \(d \).

Let \(S = A[U] \sim m[U] \), and let \(A(U) \) denote \(S^{-1}A[U] \). Let \(\tau(P, f) = \rho(P, \omega A(U)f) \) and \(\tau(\Theta - U \Pi, f) = \rho(\Theta - U \Pi, \omega A(U)f) \). Consider

\[
\begin{array}{ccc}
A(U)[X] & \xrightarrow{\rho} & k(U)[X] \\
\downarrow{\psi} & \quad & \downarrow{\psi} \\
B[X] & \xrightarrow{\rho} & k(\bar{u})[X]
\end{array}
\]
where \(\rho(\alpha) \) is the leading form in \(X_1, \ldots, X_n \) of \(\alpha \) modulo \(mA(U)[X] \) or \(mB[X] \), where \(\psi(U) = u \) and \(\psi|_{A\{X\}} = id_{A\{X\}} \), and where \(\overline{\psi}(U) = \overline{u} \) and \(\overline{\psi}_{k\{X\}} = id_{k\{X\}} \). Because \(P \subset (P, \omega A(U)f) \),

\[
\overline{\psi}_\tau(P, f) = \rho \psi(P, \omega A(U)f) = \tau Bf.
\]

Note that \(\overline{\psi} : k(U)[X] \rightarrow k(\overline{u})[X] \) is an isomorphism over the isomorphism \(k(U) \cong k(\overline{u}) \) induced by \(\overline{\psi} \). Let

\[
\gamma = \dim_{k(U)} \tau(P, f) / (\Theta - U\Pi, f) = \dim_{k(\overline{u})} \tau Bf / \overline{\psi}_\lambda(\Theta - U\Pi, f).
\]

Then

\[
\dim_{k(U)} \tau(f, \Theta - U\Pi) / (\tau Af, \Theta - U\Pi) = \alpha - \gamma.
\]

Let \(H \) be \(\rho((\omega A(U)f)^\wedge, A(U)[X]) \Theta - U\Pi \) where \(\wedge \) denotes the \(I \)-adic completion. Let \(Q \) be an associated prime ideal of \(\omega A(U)f \). \((X_1 - x_1, \ldots, X_n - x_n) \subset Q \), so \(Q \subset (mA(U), I) \). \(A(U)[X]_{m\overline{A}(U)f} \) with the \(I \)-adic topology is a Zariski ring with completion \(A(U)[[X]] \). Hence

\[
((\omega A(U)f)^\wedge, A(U)[X]) \Theta - U\Pi = (\omega A(U)f, A(U)[X]) \Theta - U\Pi
\]

[7, Corollary 4, p. 266], and \(H = \rho(\omega A(U)f) : \Theta - U\Pi \). So \(\overline{\psi} H \subset (k(\overline{u}) \cdot \tau Af : \Theta - U\Pi) \). Let

\[
\delta = \dim_{k(U)} H / k(U) \cdot \tau Af.
\]

Then

\[
\dim_{k(U)} (k(U) \cdot \tau Af : \Theta - U\Pi) / H = \beta - \delta.
\]

It is to be first shown that \(\alpha - \gamma = \beta - \delta \).

Let \(M \in A(U)[X_1, \ldots, X_n] \) be homogeneous of degree \(d \) such that \(M + mA(U)[X] \in \tau(\Theta - U\Pi, f) \). The following four assertions follow easily from the fact that \(x_i - X_i \in \omega A(U)f \). There is an integer \(h \leq d - 1 \) and forms \(H_i \in A(U)[X] \) of degree \(i = h, \ldots, d - 1 \) such that

\[
(\Theta - U\Pi)(H_h + \cdots + H_{d-1}) + M \in \omega A(U)f + A(U)[X]_{(d+1)}.
\]

If \(M - M' \in mA(U)[X]_d \), then

\[
(\Theta - U\Pi)(H_h + \cdots + H_{d-1}) + M' \in \omega A(U)f + A(U)[X]_{(d+1)}.
\]

If \(H_h - H'_h \in mA(U)[X]_h \), there are forms \(H'_i \in A(U)[X] \) for \(i = h + 1, \ldots, d - 1 \) such that

\[
(\Theta - U\Pi)(H'_h + \cdots + H'_{d-1}) + M \in \omega A(U)f + A(U)[X]_{(d+1)}.
\]

If \(F \in A(U)[X]_d \) and if \(F + mA(U)[X] \in k[X] \cdot \tau Af \), then
\begin{equation}
(\Theta - U \Pi)(H_h + \cdots + H_{d-1}) + (M + F) \in \omega A(U)[X] + A(U)[X]_{(d+1)}.
\end{equation}

Note that \(H_h + mA(U)[X] \in (k(U) \cdot \tau A f : \Theta - U \Pi) \). Let \(h(M) < \deg M \) be the maximal degree of all such \(H_h \) as above. Let \(H(M) \) be the set of all such \(H_h \) as above with \(h = h(M) \). \(M + mA(U)[X] \in (\tau A f, \Theta - U \Pi) \) if and only if \(h(M) = \deg M - 1 \) which is true if and only if \(|h(M)| \subset H(M) \) (which in this case is \(A(U)[X]_{h(M)} \)). If \(b \in A(U) \sim mA(U) \), \(bH(M) = H(bM) \). If \(H \in H(M) \) then
\begin{equation}
(H + mA(U)[X]_{h(M)}) + H_{h(M)} \subset H(M)/mA(U)[X]_{h(M)}
\end{equation}
and \(H(M) \) will be considered as a subset of \((k(U) \cdot \tau A f : \Theta - U \Pi)/i \).

A \(k(U) \)-linear injection of \(\tau(f, \Theta - U \Pi)/(\tau A f, \Theta - U \Pi) \) into \((k(U) \cdot \tau A f : \Theta - U \Pi)/i \) is to be defined. Let \(M_1, \ldots, M_a \in A(U)[X] \) be forms such that their residues modulo \(mA(U)[X] \) are in \(\tau(f, \Theta - U \Pi) \), such that their residues in \(\tau(f, \Theta - U \Pi)/(\tau A f, \Theta - U \Pi) \) are linearly independent over \(k(U) \), such that \(h(M_i) < h(M_{i+1}) \) and such that if \(h(M_i) = h(M_{i+1}) \) then \(\deg M_i \geq \deg M_{i+1} \). Choose \(\eta_i \in H(M_i) \). Suppose \(\eta_i, \ldots, \eta_{t-1} \) are linearly independent over \(k(U) \), and suppose \(\eta_i = \alpha_1 \eta_1 + \cdots + \alpha_{t-1} \eta_{t-1} \) where \(\alpha_i \in A(U) \). The \(\alpha_i \) are nonzero only for those \(M_i \) with \(h(M_i) = h(M_i) \). \((H_{M_i}) = h(M_{t-1}) \), for \(\eta_i \neq 0 \). Let \(M_1, \ldots, M_{t-1} \) be exactly those \(M_i \) with \(i < t \), \(h(M_i) = h(M_i) \) and \(\deg M_i = \deg M_t \). Then \(h(M_t - \alpha_1 M_1 - \cdots - \alpha_{t-1} M_{t-1}) > h(M_i) \), so replace \(M_t \) by \(M_t - \alpha_1 M_1 - \cdots - \alpha_{t-1} M_{t-1} \), choose a new \(\eta_t \), and reorder \(M_t, \ldots, M_a \). With a finite number of repetitions of the above process \(\eta_1, \ldots, \eta_{t-1} \) will be linearly independent, for at worst \(h(M_i) \) will eventually be greater than \(h(M_{t-1}) \), and linear independence will follow. Thus \(a \leq \beta - \delta \), and \(a - \gamma \leq \beta - \delta \).

A construction analogous to the above is used to derive the opposite inequality. Let \(H \in A(U)[X]_d \) with \(H + mA(U)[X] \in (k(U) \cdot \tau A f : \Theta - U \Pi) \). Let \(m(H) \) be the maximal integer \(m \) such that there exists a form \(M \) of degree \(m \) and forms \(H_i \) of degree \(i = d + 1, \ldots, m - 1 \) such that
\begin{equation}
(\Theta - U \Pi)(H + H_{d+1} + \cdots + H_{m-1}) + M \in \omega A(U)f + A(U)[X]_{(m+1)}
\end{equation}
and \(M + mA(U)[X] \notin (\tau A f, \Theta - U \Pi) \). If such a maximum does not exist then \(H + mA(U)[X] \notin H \), and if \(H + mA(U)[X] \notin H \), then \(m(H) \geq \deg H + 1 \). Let \(M(H) \) be the set of all such \(M \) of degree \(m(H) \). \(M(bH) = bM(H) \) for \(b \in A(U) \sim mA(U) \). If \(M \in M(H) \) then \(M + mA(U)[X] \subset M(H) \),
\begin{equation}
M + mA(U)[X]_{m(H)} + (\tau A f, \Theta - U \Pi)_{m(H)} \subset M(H)/mA(U)[X]_{m(H)}
\end{equation}
and \(M + mA(U)[X]_{m(H)} \in (\tau f, \Theta - U \Pi)/i \). \(M(H) \) will be considered as a subset of \((\tau f, \Theta - U \Pi)/(\tau A f, \Theta - U \Pi) \).

Let \(H_1, \ldots, H_{\beta - \delta} \) be forms in \(mA(U)[X] \) such that their residues modulo \(mA(U)[X] \) are in \((k(U) \cdot \tau A f : \Theta - U \Pi) \), such that their residues form a \(k(U) \)-basis for \((k(U) \cdot \tau A f : \Theta - U \Pi)/i \), \(m(H_i) \leq m(H_{i+1}) \) and such that if \(m(H_i) = m(H_{i+1}) \) then \(\deg M_i = \deg M_{i+1} \).
Choose \(m_{i+1} \in M(H_i) \). Suppose \(\mu_1, \ldots, \mu_{t-1} \) are linearly independent over \(k(U) \) and \(\mu_t = \alpha_1 \mu_1 + \cdots + \alpha_{t-1} \mu_{t-1} \) where \(\alpha_i \in A(U) \). \(\alpha_i \) is nonzero only if \(m(H_i) = m(H_t) \), \(m(H_i) = m(H_t) \) for \(i \neq 0 \), and let \(H_i, \ldots, H_{t-1} \) be those \(H_i \) with \(i < t \), \(m(H_i) = m(H_t) \) and \(\deg H_i = \deg H_t \). Then \(m(H_i - \alpha_i H_{t-1} < \cdots < \alpha_{t-1} H_{t-1}) > m(H_t) \). Replace \(H_i \) by \(H_i - \alpha_i H_{t-1} \), choose \(\mu_t \) anew, reorder \(H_1, \ldots, H_{t-1}, \) with a finite number of repetitions the injection is defined, and \(\alpha - \gamma > \beta - \delta \).

Thus \(\alpha - \gamma = \beta - \delta \). The final goal in the proof of \(\alpha = \beta \) is to show that \(\gamma \) and \(\delta \) are equal.

Let \(\mathfrak{A} \subset \mathfrak{B} \) be two ideals of \(A(U) \). As either \(k(U) \) or \(A(U) \)-modules, \(\mathfrak{B} / \mathfrak{A} \cong \sigma \mathfrak{B} / \sigma \mathfrak{A} \). Now

\[
\sigma \mathfrak{B} / \sigma \mathfrak{A} \cong \sum_{n \geq 0} \bigoplus \left(\frac{m^n \cap \mathfrak{B} + m^{n+1}/m^{n+1}}{(m^n \cap \mathfrak{A} + m^{n+1}/m^{n+1})} \right)
\]

and

\[
\gamma = l_{A(U)}(P, f)(y - xU, f),
\]

and

\[
\delta = l_{A(U)}(A(U)f : y - xU) / A(U)f.
\]

Let \(\psi \in (A(U)f : y - xU) \). \(\psi / f \)(y - xU) \in A(U), \(f(\psi / f)(y - xU) \in P \), \(f \not\in P \), so \((\psi / f)(y - xU) \in P \). Let \(\xi_1(\psi) = (\psi / f)(y - xU) \). If \(\psi \in A(U)f \) then \(\xi_1(\psi) \in A(U)(y - xU) \). Hence

\[
(\psi / f)(y - xU) \in A(U)f \rightarrow (P, f)(y - xU, f)
\]

is a homomorphism. Let \(\psi \in \text{Ker} \xi_1 \), that is, \((\psi / f)(y - xU) = af + b(y - xU) \) for some \(a \) and \(b \) in \(A(U) \). Then \((\psi - bf)(y - xU) = af^2 \), and \(\psi \in ((A(U)f)^2 : y - xU, f) \). If \(\phi \in (A(U)f)^2 : y - xU \), then \(\phi(y - xU) = af^2 \) for some \(a \) in \(A(U) \), \(\xi_1(\phi) = (\phi / f)(y - xU) = af \), and \(\phi \in \text{Ker} \xi_1 \). So

\[
\text{Ker} \xi_1 = (A(U)f^2 : y - xU, f) / A(U)f.
\]

Now,

\[
(A(U)f^4 : y - xU) / (A(U)f^4 : y - xU) \cap A(U)f
\]

and a homomorphism
THE MULTIPLICITY FUNCTION OF A LOCAL RING

\[\xi_i: (A(U)f^i: y - xU)/(A(U)f^i: y - xU) \cap A(U)f \]

\[\rightarrow \{ \cdots ((P, f)/(y - xU, f))/\text{Im} \, \xi_1)/\cdots)/\text{Im} \, \xi_{i-1} \]

with

\[\text{Ker} \, \xi_i = ((A(U)f^i-1: y - xU), f)/A(U)f \]

is to be defined inductively.

If \(\psi \in (A(U)f^i: y - xU) \), let \(\xi_0(\psi) = (\psi/f^i)(y - xU) \in P \). If \(\psi \in (A(U)f^i: y - xU) \cap A(U)f \), then \(\psi/f \in (A(U)f^{i-1}: y - xU) \), \(\xi_{i-1}(\psi/f) = (\psi/f^i)(y - xU) = \xi_i(\psi) \), and \(\xi_i(\psi) \in \text{Im} \, \xi_{i-1} \). Let \(\psi \in \text{Ker} \, \xi_i \). Then

\[(\psi/f^i)(y - xU) = a^i + b(y - xU) \]

\[+ (\psi_1/f)(y - xU) + \cdots +(\psi_{i-1}/f^{i-1})(y - xU) \]

where \(\psi_j \in (A(U)f^j: y - xU) \) for \(j = 1, \ldots , i - 1 \), and

\[\psi - b^i - f^{i-1}\psi_1 - \cdots - f\psi_{i-1})(y - xU) = a^i + 1 , \]

so \(\text{Ker} \, \xi_i \subset ((A(U)f^{i+1}: y - xU), f)/A(U)f \). If \(\phi \in (A(U)f^{i+1}: y - xU) \) then

\[\xi_i(\phi) = (\phi/f^i)(y - xU), f, f \in A(U)f \), and \(\phi \in \text{Ker} \, \xi_i \) Thus

\[\text{Ker} \, \xi_i = ((A(U)f^{i+1}: y - xU), f)/A(U)f \].

\[\bigcap_i A(U)f^i = (0) \], so \(\bigcap_i (A(U)f^{i+1}: y - xU) = (0) \), and by [3, Theorem 30.1, p. 103], \(\bigcap_i \text{Ker} \, \xi_i \subset \bigcap_i (A(U)f^i + m^i) = A(U)f \). By [5, Theorem 1, p. 365], because \(y - xU \) is superficial of degree 1, \((m_1+1 A(U): y - xU) = m^i \)

for all sufficiently large \(i \), so \(\bigcap_i \text{Ker} \, \xi_i \subset \bigcap_i (A(U)f^i + m^i) = A(U)f \). If \(\phi \in P \) there is an integer \(s \) such that \(f^s\phi \in A(U)(y - xU) \), for there is an integer \(s \) such that \(P \cap m^s = A(U)(y - xU) \cap m^s \). Then \(\xi_s(f^s\phi)(y - xU) = \phi \).

Let

\[\mathcal{U}_i = ((A(U)f^i: y - xU), f) , \]

and let

\[\mathcal{B}_i = (((\psi/f^i)(y - xU)\psi \in (A(U)f^i: y - xU)), f). \]

Then \(\bigcap_i \mathcal{B}_i = A(U)f \) and \(\mathcal{U}_i = A(U)f \) for some \(t \geq 1 \), for \((A(U)f^i: y - xU)/A(U)f \)

is of finite length. Hence

\[\mathcal{U}_0 = (A(U)f: y - xU) \cup \mathcal{U}_1 \cup \cdots \cup \mathcal{U}_i = A(U)f , \]

and

\[(y - xU, f) = \mathcal{B}_0 \subset \mathcal{B}_1 \subset \cdots \subset \mathcal{B}_s = (P, f) \]

where \(\mathcal{U}_i/\mathcal{U}_{i+1} \cong \mathcal{B}_{i+1}/\mathcal{B}_i \) as \(A(U) \)-modules. Thus \(\gamma = \delta \).

The above construction is inductive to dimension one. Let \(B_d = A \) and
$B_{d-1} = B$ where d is again the dimension of A, let $\Theta_{d-1} = \Theta, y_{d-1} = y, u_{d-1} = u$ and $L_{d-1} = \Theta - U$. Π and $x = \Pi(x_i)$ remain fixed throughout the induction.

Suppose B_{j+1} has been defined with the required properties. Let Θ_j be a form of degree one in $A[X]$ such that $y_j = \Theta_j(x_j)$ is a superficial element of B_{j+1} and of $B_{j+1} \mid f, \Theta_j$ is not contained in any associated prime ideal of $(\rho_j, L_{d-1}, \ldots, L_{j+1})$ other than possibly I nor contained in any isolated prime ideal of $(\rho_j, L_{d-1}, \ldots, L_{j+1}, \Pi)$ for any isolated prime ideal ρ_j of τA_0, and such that y_j is contained in no associated prime ideal of $B_{j+1}x$ except possibly mB_{j+1}.

The above arguments hold when A is replaced by B_{j+1} and B is replaced by $B_j = S^{-1}B_{j+1}[u_j]$ where $u_j = y_j/x$ and $S = B_{j+1}[u_j] \sim mB_{j+1}[u_j]$.

Let $B = B_1$. B is one dimensional, B is local with maximal ideal mB, and $\mu_A(f) = \mu_B(f)$.

Let \mathfrak{R}_1 be $\mathfrak{T}^{-1}\mathfrak{R}$ where $T = \mathfrak{T} \sim (\mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_r)$ and where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are the height one prime ideals of \mathfrak{T}. For every $i = 1, \ldots, r$,

$$\mathfrak{R}_1 \mathfrak{p}_i \cap A[u_{d-1}, \ldots, u_1] = m[u_{d-1}, \ldots, u_1].$$

For let $z \in A[u_{d-1}, \ldots, U_1] \cap \mathfrak{R}_1 \mathfrak{p}$ where \mathfrak{p} denotes one of the \mathfrak{p}_i. Then $z \in A[u_{d-1}, \ldots, u_1] \cap \mathfrak{p}$. Let \mathfrak{p} be the prime ideal corresponding to \mathfrak{p} which is associated to τA_0, and let $F(\Theta_{d-1}, \ldots, \Theta_1, \Pi)$ be a form in $\Theta_{d-1}, \ldots, \Theta_1$ and Π with coefficients in A such that

$$F(\Theta_{d-1}(x_j/x), \ldots, \Theta_1(x_j/x), \Pi(x_j/x)) = z.$$

$A[u_{d-1}, \ldots, u_1] \subset \mathfrak{R}$, so $z \in \mathfrak{p}$ and by the correspondence between \mathfrak{p} and \mathfrak{p}, $F(\Theta_{d-1}, \ldots, \Theta_1, \Pi) + m[X] \subset \mathfrak{p}$. Suppose F modulo m, \bar{F}, is nonzero. If \bar{F} were a power of Π, then $\Pi \in \mathfrak{p}$ which is a contradiction. So there is an integer j such that $d - 1 \geq j > 1$, $\bar{F} \in k[\Theta_{d-1}, \ldots, \Theta_j, \Pi]$ and $\bar{F} \notin k[\Theta_{d-1}, \ldots, \Theta_{j+1}, \Pi]$.

Then

$$\bar{F} = \bar{G} \Pi^e \mod (\Theta_{d-1} - \Pi, \ldots, \Theta_{j+1} - \Pi) \subset (\rho_j, L_{d-1}, \ldots, L_{j+1}, \Pi)$$

for some form $\bar{G} \in k[\Theta_j, \Pi]$ which is not divisible by Π. Letting $s > 1$ be the degree of $\bar{G}, \Theta_j \in (\rho_j, L_{d-1}, \ldots, L_{j+1}, \Pi)$ which is a contradiction to the choice of Θ_j. Hence $\bar{F} = 0$, and $z \in m[u_{d-1}, \ldots, u_1]$.

B is a ring of fractions of $A[u_{d-1}, \ldots, u_1]$ with $m[u_{d-1}, \ldots, u_1] \subset mB \cap A[u_{d-1}, \ldots, u_1]$. mB is a prime ideal of height one of B, so $mB \cap A[u_{d-1}, \ldots, u_1]$ must be of height one also, and

$$mB \cap A[u_{d-1}, \ldots, u_1] = m[u_{d-1}, \ldots, u_1].$$

It follows that

$$B = A[u_{d-1}, \ldots, u_1] m[u_{d-1}, \ldots, u_1],$$

and therefore $B \subset \mathfrak{R}_1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The multiplicity function of a local ring

\$R_1 = R_1 \cap \cdots \cap R_r \) is a finite integral extension of \(B = B_1 \). The proof is an adaptation of the proof of Theorem 10 [5, p. 371]. Let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_r \) also denote the proper prime ideals \(R_1 \mathfrak{p}_1, \ldots, R_1 \mathfrak{p}_r \) of \(R_1 \), let \(m_j \) be integers such that \(\mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_r^{m_r} \subset R_1 m \), and let \(n = \mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_r^{m_r} \). Then \(m^2 \subset (R_1 m)^t \) and \((R_1 m)^{tt} \subset m^2 \) where \(t = \max \{ m_1, \ldots, m_r \} \). Let \(\hat{B} \) be the m-B-adic completion of \(B \), and let \(\hat{R} \) be the \(R_1 \)-adic completion of \(R_1 \). \(\hat{R} \) is a \(\hat{B} \)-module, \(\hat{R} \) is the m-adic completion of \(R_1 \cap \bigcap_{n>0} m^n = (0) \), and by [7, Corollary 2, p. 273], the \(mB \)-adic topology of \(B \) is induced by the m-adic topology of \(R_1 \). It is clear that \(\hat{R}/\hat{R} m = R_1/R_1 m \).

\(B[x_1/x, \ldots, x_n/x] \) is of dimension one [3, Theorem 33.2, p. 115], and \(R_1 \) is a ring of quotients of \(B[x_1/x, \ldots, x_n/x] \). \(\mathfrak{p}_j \cap B[x_1/x, \ldots, x_n/x] \) for \(j = 1, \ldots, r \) are distinct proper prime ideals of \(B[x_1/x, \ldots, x_n/x] \). Let \(p \) be a proper prime ideal of \(B[x_1/x, \ldots, x_n/x] \). \(B[x_1/x, \ldots, x_n/x] \) is a ring of fractions of \(A[x_1/x, \ldots, x_n/x] \), so \(p \cap A[x_1/x, \ldots, x_n/x] \) is a prime ideal of height one, therefore there is a prime ideal \(\mathfrak{p}_j \) of \(R_1 \) such that \(\mathfrak{p}_j \cap A[x_1/x, \ldots, x_n/x] = p \cap A[x_1/x, \ldots, x_n/x] \), and \(\mathfrak{p} \cap B[x_1/x, \ldots, x_n/x] = p \). From the above assertions it is immediate that \(A[x_1/x, \ldots, x_n/x] = B[x_1/x, \ldots, x_n/x] \).

Let \(\theta_j \) be the residue of \(x_j/x \) modulo \(\mathfrak{p}_j \). \(R_1/\mathfrak{p}_j = k(\vec{u}_1, \ldots, \vec{u}_{d-1}) \) \([\theta_{j_1}, \ldots, \theta_{jn}] \) is a field, and \(\theta_j \) are algebraic over \(k(\vec{u}) = k(\vec{u}_1, \ldots, \vec{u}_{d-1}) \). By multiplying together the \(m_j \)-th power of a polynomial which modulo \(\mathfrak{p}_j \) is the algebraic relation of \(\theta_j \) over \(k(\vec{u}) \) for \(j = 1, \ldots, r \), there is a relation

\[
(x_j/x)^{t_j} + \alpha_{t_j-1}(x_j/x)^{t_j-1} + \cdots + \alpha_0 \in R_1 m
\]

where \(\alpha_0, \ldots, \alpha_{t_j-1} \in B \). Therefore \(R_1/R_1 m \) is a finite \(B/mB \) module, and \(\hat{R} \) is a finite \(\hat{B} \) module [7, Corollary 2, p. 259]. So for every positive integer \(s \) there is a relation

\[
(x_j/x)^s \in [\hat{B}(x_j/x)^{t_j-1} + \cdots + \hat{B}(x_j/x) + \hat{B}] \cap B
\]

for the latter module is finitely generated over the Zariski ring \(B \) and is therefore closed. \(R_1 \) is thus finite integral over \(B \).

It is to be shown that \([R_1/\mathfrak{p}_j : B/mB] = e_j(k[X]/\mathfrak{p}_j) \). From the choice of \(\Theta_j \) it follows that \(L_j \) is a superficial element of

\[
k(\vec{u}_{d-1}, \ldots, \vec{u}_j)[X]/(\mathfrak{p}_j, L_{d-1}, \ldots, L_{j+1}),
\]

where \(\vec{u}_j \) is transcendental over \(k(\vec{u}_{d-1}, \ldots, \vec{u}_{j+1}) \). The dimensions are greater than one, so

\[
e_j(k[X]/\mathfrak{p}_j) = e_j(k(\vec{u})[X]/(\mathfrak{p}_j, L_{d-1}, \ldots, L_1)),
\]
where \(k(\bar{u}) \) now denotes \(k(\bar{u}_{d-1}, \ldots, \bar{u}_1) \). Let \(M_k(X) \in A[X] \) for \(k = 1, \ldots, t \) be forms of degree \(d_k \) such that the residues of \(M_1(x_i/x), \ldots, M_t(x_i/x) \) modulo \(\mathfrak{p}_x \) form a basis of \(\mathcal{R}^1/\mathfrak{p}_x \) over \(k(\bar{u}) = B/mB \). If \(G \) is a form in \(A[X] \) of degree \(g \geq \) max \(\{d_1, \ldots, d_t\} \), then

\[
G(\theta_{si}) = \sum_{k=1}^{t} \alpha_k(\Pi(\theta_{si}))^{d_k-1}M_k(\theta_{si})
\]

for some \(\alpha_1, \ldots, \alpha_t \in k(\bar{u}) \), for \(\Pi(\theta_{si}) = 1 \). Letting

\[
0 \rightarrow K \rightarrow k(\bar{u})[X_1, \ldots, X_n] \rightarrow k(\bar{u})[\theta_{s1}, \ldots, \theta_{sn}] \rightarrow 0
\]

be the exact where \(X_i \rightarrow \theta_{si}, k(\bar{u})[X]_g/K_g \) is of dimension \(t \) over \(k(\bar{u}) \) for \(g \geq \) max \(\{d_1, \ldots, d_t\} \). \(K \supset (\mathfrak{p}_x, L_{d-1}, \ldots, L_1) \) by the correspondence between \(\mathfrak{p}_x \) and \(\mathfrak{p}_s \). Let \(G \in K_g \). There is a unit \(\beta \) in \(k(\bar{u}) \) such that \(\beta G \in k[\bar{u}][X]_g \), and there are \(F_j \in k[\bar{u}][X] \) for \(j = 1, \ldots, d - 1 \) such that

\[
E' = \Pi^c \beta G = \sum_{j=1}^{d-1} (\Theta_j - \bar{u}_j \Pi) F_j \in k[X]_{g+c}
\]

where \(c \) is the degree of \(\bar{u} \) in \(\beta G \). Let \(E \in A[X]_{g+c} \) be a representative of \(E' \). \(E(x_i/x) \in \mathfrak{p}_s \), so \(E' \in \mathfrak{p}_s \). Thus \(\Pi^c G \in (\mathfrak{p}_s, L_{d-1}, \ldots, L_1) \). Inductively \(\Pi \) is contained in no minimal prime ideal of \((\mathfrak{p}_s, L_{d-1}, \ldots, L_1) \). For let \(P \) be such a minimal prime ideal and suppose \(\Pi \in P \). Then \(\Theta_j \in P \), and inductively by dimension, \(P \) is a minimal prime ideal of \((\mathfrak{p}_s, L_{d-1}, \ldots, L_1) \) except perhaps the primary component belonging to \(I, K_g = (\mathfrak{p}_s, L_d, \ldots, L_1)_g \) for all large enough values of \(g \), and by comparison of the Hilbert polynomials, \(t = e_f(k[X]/\mathfrak{p}). \)

*Apply the first part of the proof of Lemma 1 to \(\mathcal{R}^1 \) over \(B = B_1 \), and obtain

\[
\mu_A(f) = \mu_B(f) = \sum_{i=1}^{r} e_f(k[X]/\mathfrak{p}_i)\mu_{\mathcal{R}_1}(f).
\]

4. The valuation formula. Let \(A \) be a local ring with maximal ideal \(m \). For a definition of a valuation of \(A \), finite on \(A \) and centered at a prime ideal of \(A \), see \([2, \S 1] \). By the additivity formula \(\mu_A(f) = \sum_{p} \lambda_p(f)e_{m}(A/p) \) where the sum ranges over all prime ideals \(p \) of \(A \) which are of depth equal to the dimension of \(A \). Assume that \(A \) is nonimbedded. Then the prime ideals \(p \) are all of height one, but they do not necessarily include all the prime ideals of height one. Then also \(\lambda_p(Af) \) is a finite sum of finite rank one discrete valuations centered at \(p \).

As an example, let \(A \) be an entire factorial ring of dimension greater than
one. Let \(\{v_i\}_{i \in I} \) be the set of prime divisors of type one of \(A \), and let \(p_i \) be a prime element of \(A \) with \(v_i(p_i) = 1 \). Let \(w_1 \) and \(w_2 \) be two distinct prime divisors of \(A \) centered at \(m \), let \(a_i = w_1(p_i) \) and \(b_i = w_2(p_i) \), and then \(w_1 = \Sigma_i a_i v_i \) and \(w_2 = \Sigma_i b_i v_i \). Let \(c_i = \min \{a_i, b_i\} \). Then \(\Sigma_i c_i v_i \geq w_1, \Sigma_i c_i v_i \neq w_1, \) and \(\Sigma_i c_i v_i \) is not a sum of valuations centered at \(m \).

Theorem. Let \(A \) be a local ring with maximal ideal \(m \). There are integral valued valuations \(v_1, \ldots, v_s \) finite on \(A \) centered at \(m \), and there are positive integers \(n_1, \ldots, n_s \) such that for every regular element \(f \) of \(A \),

\[
\mu_A(f) = n_1 v_1(f) + \cdots + n_s v_s(f).
\]

If \(A \) is nonimbedded if \(\mu_A(f) = n_1 v_1(f) + \cdots + n_s v_s(f) \) for all regular elements \(f \) of \(A \), if the valuations \(v_1, \ldots, v_s \) are independent, and if the ideal generated by each \(v_i(A) \) is all of the integers, then the valuations \(v_1, \ldots, v_s \) and the integers \(n_1, \ldots, n_s \) are unique. (If \(A \) is of dimension zero, \(\mu_A \) is the trivial valuation: \(\mu_A(f) = 0 \) if \(f \notin m \).)

The proof of the formula is now straightforward. By Lemma 2, \(A \) can be assumed to be entire. It may also be assumed that the residue field of \(A \) is infinite. In fact let \(A[x] \) be the polynomial ring in one variable over \(A \), let \(S = A[x] \sim mA[x], \) and let \(A(x) = S^{-1}A[x], \) a local ring with maximal ideal \(m \cdot A(x) \) and residue field \(A(x)/mA(x) = k(x) \) a simple transcendental extension of \(k = A/m. \) Then \(\mu_A = \mu_{A(x)}, \) for \(A(x)/A(x)f = (A/Af)(x) \) and letting \(B = A/Af \)

\[
G_{mB(x)}B(x) = \sum_{n>0} \frac{m^n B(x)}{m^{n+1}B(x)} \approx \sum_{n>0} \frac{m^n}{m^{n+1}} \otimes_A B(x)
\]

\[
\approx \sum_{n>0} \frac{m^n + Af}{m^{n+1} + Af} \otimes_k k(x) \approx (G_{mB}) \otimes_k k(x),
\]

so the multiplicities of \(A/Af \) and of \(A(x)/A(x)f \) are equal. A valuation of \(A(x) \) restricted to \(A \) remains a valuation. By Lemma 4, \(A \) can be assumed to be one dimensional, by Lemma 3, \(A \) can be assumed to be normal, and apply the Corollary of Proposition 2 to obtain the formula.

The proof of the unicity uses a slight generalization of the approximation theorem. Define two valuations of \(A \) to be equivalent if there is an order isomorphism and the usual commutative diagram, and to be independent if they are not equivalent.

Lemma. Let \(Q \) be a noetherian nonimbedded ring which is its own total quotient ring. Let \(v_1, \ldots, v_s \) be independent rank one valuations of \(Q \), let \(u_1, \ldots, u_s \in Q \) and let \(\alpha_i \in v_i(A) \) be finite for \(i = 1, \ldots, s \). There is an element \(u \) of \(Q \) such that \(v_i(u - u_i) = \alpha_i \) for \(i = 1, \ldots, s \).
Proof. \(Q = Q_1 \oplus \cdots \oplus Q_n \) where \(Q_j \) is a local ring of dimension zero, and let

\[
\mathfrak{R}_j = Q_1 \oplus \cdots \oplus Q_{j-1} \oplus Q_j \oplus Q_{j+1} \oplus \cdots \oplus Q_n
\]

where \(\mathfrak{R}_j \) is the nil radical of \(Q_j \). Let \(v_1, \ldots, v_t \) be all of the valuations \(v_1, \ldots, v_s \) which have \(N_{v_j} = N_j \). Then \(v_1, \ldots, v_s \) are naturally independent valuations of \(Q/N_j = k_j \). By the approximation theorem for a field [7, Theorem 18, p. 45], there is an element \(u'_1 \) of \(Q_1 \) with \(v_i(u'_1 - \text{proj}_1 u_i) = \alpha_i \) for \(i = 1, \ldots, t \). Repeat this for each \(N_j \), obtaining \(u'_j \in Q_j \) for \(2 \leq j \leq n \).

Let \(u = u'_1 \oplus \cdots \oplus u'_n \), and the proof of lemma is complete.

A is assumed to be nonimbedded. Suppose \(n_1 v_1 + \cdots + n_s v_s > 0 \) where \(v_1, \ldots, v_s \) are independent nontrivial rank one valuations finite on \(A \).

It is to be seen that \(n_1 > 0, \ldots, n_{s-1} > 0 \) and \(n_s > 0 \). Let \(u = f/g \in QA \) where \(f \) and \(g \) are elements of \(A \), such that for some \(i \), \(v_i(u) > 0 \) and \(v_i(u) = 0 \) for \(j \neq i \). Then \(v_i(f) > v_i(g), v_j(f) = v_j(g) \) for \(j \neq i \), \(n_i(v_i(f) - v_i(g)) > 0 \) and \(n_i > 0 \).

Example. Let

\[
A = \mathbb{C}[x, y, z]/(x^4+y^2+3z^3) = \mathbb{C}[x, y, Z]/(xy-z^3)
\]

which is normal, analytically irreducible and Cohen-Macaulay. By direct computation \(\mu_A(x) = \mu_A(y) = 3, \mu_A(x+y) = 2 \), and \(\mu_A \) is not a valuation. In fact, \(\mu_A = v_x + v_y \) where \(\mathbb{C}(y/z)[z] \) and \(\mathbb{C}(x/z)[z] \) are the valuation rings of \(v_x \) and \(v_y \) respectively. Note that neither \(x \) nor \(y \) are superficial elements of \(A \).

Example. Let

\[
A = k[w, x, y, z]/(w, x, y, z) = k[s^4, t^4, s^3t^3, t^4] \subset k[s, t]
\]

the polynomial ring in two variables over a field \(k \). \(IA = k[s^4, s^3t, s^2t^2, st^3, t^4] \), \(DA = \{s^4, s^3t, st^3, t^4\} \) and \(A \) is not Cohen-Macaulay. \(A \) is the localization of a projective (graded) ring, and by Proposition 2, \(\mu_A = e_m(A)v_A \) where \(v_A \) is the order valuation of \(A \). By direct computation \(\mu_A(x) = 4 \), so \(e_m(A) = 4 \). Also \(R = k(s/t)[t^4] \) which verifies the formula of the theorem for this example.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044

Current address: 2017 North 6th Street Terrace, Blue Springs, Missouri 64015