Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free topological groups and dimension


Author: Charles Joiner
Journal: Trans. Amer. Math. Soc. 220 (1976), 401-418
MSC: Primary 22A05; Secondary 54F45
DOI: https://doi.org/10.1090/S0002-9947-1976-0412322-X
MathSciNet review: 0412322
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a completely regular space X we denote by $ F(X)$ and $ A(X)$ the free topological group of X and the free Abelian topological group of X, respectively, in the sense of Markov and Graev.

Let X and Y be locally compact metric spaces with either $ A(X)$ topologically isomorphic to $ A(Y)$ or $ F(X)$ topologically isomorphic to $ F(Y)$. We show that in either case X and Y have the same weak inductive dimension. To prove these results we use a Fundamental Lemma which deals with the structure of the topology of $ F(X)$ and $ A(X)$. We give other results on the topology of $ F(X)$ and $ A(X)$ and on the position of X in $ F(X)$ and $ A(X)$.


References [Enhancements On Off] (What's this?)

  • [1] H. Abels, Normen auf freien topolegischen Gruppen, Math. Z. 129 (1972), 25-42. MR 47 #3589. MR 0315040 (47:3589)
  • [2] P. Alexandroff, Darstellung der Grundzüge der Urysohnschen Dimensionstheorie, Math. Ann. 98 (1927), 31-63. MR 1512391
  • [3] A. V. Arhangel'skiĭ, Mappings related to topological groups, Dokl. Akad. Nauk SSSR 181 (1968), 1303-1306 = Soviet Math. Dokl. 9 (1968), 1011-1015. MR 38 #2237. MR 0233916 (38:2237)
  • [4] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587-594. MR 25 #141. MR 0136676 (25:141)
  • [5] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [6] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 305-364. MR 10, 11. MR 0025474 (10:11d)
  • [7] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [8] S. Kakutani, Free topological groups and infinite direct product topological groups, Proc. Imp. Acad. Tokyo 20 (1944), 595-598. MR 7, 240. MR 0014093 (7:240c)
  • [9] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [10] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7.
  • [11] A. S. Miščenko, Dimension of groups with a left-invariant topology, Dokl. Akad. Nauk SSSR 159 (1964), 753-754 = Soviet Math. Dokl. 5 (1964), 1603-1605. MR 30 #3446. MR 0173233 (30:3446)
  • [12] S. A. Morris, Varieties of topological groups. I, Bull. Austral. Math. Soc. 1 (1969), 145-160. MR 41 #3655a. MR 0259010 (41:3655a)
  • [13] -, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1-13. MR 41 #3655b. MR 0259011 (41:3655b)
  • [14] -, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165-178. MR 41 #3655c. MR 0259012 (41:3655c)
  • [15] J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380.
  • [16] T. Nakayama, Note on free topological groups, Proc. Imp. Acad. Tokyo 19 (1943), 471-475. MR 7, 240. MR 0014092 (7:240b)
  • [17] L. S. Pontrjagin, Continuous groups, 2nd ed., GITTL, Moscow, 1954; English transl., Gordon and Breach, New York, 1966. MR 17, 171; 34 #1439. MR 528130 (80c:22001)
  • [18] P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591-598. MR 9, 605. MR 0025152 (9:605f)
  • [19] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 35 #970. MR 0210075 (35:970)
  • [20] B. V. S. Thomas, Free topological groups, General Topology and Appl. 4 (1974), 51-72. MR 49 #7385. MR 0342639 (49:7385)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A05, 54F45

Retrieve articles in all journals with MSC: 22A05, 54F45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0412322-X
Keywords: Free topological group, free Abelian topological group, dimension, compactness, paracompactness, automorphism, varieties of topological groups
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society