Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Decomposability of homotopy lens spaces and free cyclic group actions on homotopy spheres


Author: Kai Wang
Journal: Trans. Amer. Math. Soc. 220 (1976), 361-371
MSC: Primary 57E25
DOI: https://doi.org/10.1090/S0002-9947-1976-0431237-4
MathSciNet review: 0431237
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \rho $ be a linear $ {Z_n}$ action on $ {{\text{C}}^m}$ and let $ \rho $ also denote the induced $ {Z_n}$ action on $ {S^{2p - 1}} \times {D^{2q}},{D^{2p}} \times {S^{2q - 1}}$ and $ {S^{2p - 1}} \times {S^{2q - 1}}$ where $ p = [m/2]$ and $ q = m - p$. A free differentiable $ {Z_n}$ action $ ({\Sigma ^{2m - 1}},\mu )$ on a homotopy sphere is $ \rho $-decomposable if there is an equivariant diffeomorphism $ \Phi $ of $ ({S^{2p - 1}} \times {S^{2q - 1}},\rho )$ such that $ ({\Sigma ^{2m - 1}},\mu )$ is equivalent to $ (\Sigma (\Phi ),A(\Phi ))$ where $ \Sigma (\Phi ) = {S^{2p - 1}} \times {D^{2q}}{ \cup _\Phi }{D^{2p}} \times {S^{2q - 1}}$ and $ A(\Phi )$ is a uniquely determined action on $ \Sigma (\Phi )$ such that $ A(\Phi )\vert{S^{2p - 1}} \times {D^{2q}} = \rho $ and $ A(\Phi )\vert{D^{2p}} \times {S^{2q - 1}} = \rho $. A homotopy lens space is $ \rho $-decomposable if it is the orbit space of a $ \rho $-decomposable free $ {Z_n}$ action on a homotopy sphere. In this paper, we will study the decomposabilities of homotopy lens spaces. We will also prove that for each lens space $ {L^{2m - 1}}$, there exist infinitely many inequivalent free $ {Z_n}$ actions on $ {S^{2m - 1}}$ such that the orbit spaces are simple homotopy equivalent to $ {L^{2m - 1}}$.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the groups $ J(X)$. II, Topology 3 (1965), 137-171. MR 33 #6626. MR 0198468 (33:6626)
  • [2] W. Browder, Free $ {Z_p}$-actions on homotopy spheres, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 217-226. MR 43 #2720. MR 0276982 (43:2720)
  • [3] W. Browder, T. Petrie and C. T. C. Wall, The classification of free actions of cyclic groups of odd order on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 455-459. MR 43 #5547. MR 0279826 (43:5547)
  • [4] D. Burghelea, Free differentiable $ {S^1}$ and $ {S^3}$ actions on homotopy spheres, Ann. Sci. École Norm. Sup. (4) 5 (1972), 183-215. MR 46 #6380. MR 0307260 (46:6380)
  • [5] A. Haefliger, Plongements différentiables des variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82. MR 26 #3069. MR 0145538 (26:3069)
  • [6] M. Hirsch, On the fibre homotopy type of normal bundles, Michigan Math. J. 12 (1965), 225-229. MR 32 #1724. MR 0184251 (32:1724)
  • [7] M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584. MR 0148075 (26:5584)
  • [8] K. W. Kwun and R. Szczarba, Product and sum theorems for Whitehead torsions, Ann. of Math. (2) 82 (1965), 183-190. MR 32 #454. MR 0182972 (32:454)
  • [9] G. R. Livesay and C. B. Thomas, Free $ {Z_2}$ and $ {Z_3}$ actions on homotopy spheres, Topology 7 (1968), 11-14. MR 36 #3343. MR 0220277 (36:3343)
  • [10] -, Problem 9, Problems (Conf. on Transformation Groups, New Orleans, 1967), Springer-Verlag, Berlin and New York, 1968, pp. 235-236.
  • [11] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 33 #4922. MR 0196736 (33:4922)
  • [12] -, Some free actions of cyclic groups on spheres, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London, 1964, pp. 37-42. MR 32 #6482. MR 0189055 (32:6482)
  • [13] -, Lectures on the h-cobordism theorem, Princeton Univ. Press, Princeton, N. J., 1965. MR 32 #8352. MR 0190942 (32:8352)
  • [14] T. Petrie, The Atiyah-Singer invariant, the Wall group and the function $ (t{e^x} + 1)/(t{e^x} - 1)$, Ann. of Math. (2) 92 (1974), 174-187. MR 0319216 (47:7761)
  • [15] N. E. Steenrod, Topology of fibre bundles, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N. J., 1951. MR 12, 522. MR 0039258 (12:522b)
  • [16] D. Sullivan, Triangulating homotopy equivalence, Thesis, Princeton University, Princeton, N. J., 1965.
  • [17] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)
  • [18] K. Wang, Decomposabilities of homotopy lens spaces, Bull. Amer. Math. Soc. 79 (1973), 389-392. MR 0321117 (47:9650)
  • [19] -, Differentiable $ {S^1}$ actions on homotopy spheres, Invent. Math. 24 (1974), 51-63. MR 50 #5830. MR 0353346 (50:5830)
  • [20] -, Free $ {S^1}$ actions and the group of diffeomorphisms, Trans. Amer. Math. Soc. 191 (1974), 113-127. MR 50 #8577. MR 0356106 (50:8577)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E25

Retrieve articles in all journals with MSC: 57E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0431237-4
Keywords: Wall groups, homotopy smoothings, normal invariants, decomposable homotopy lens spaces
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society